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SECTION 1

SUMMARY

This is the final report for the NASA Lewis funded grant "Characterization of Reac-

tion Kinetics in a Porous Electrode" (originally titled "Cyclic Voltammetry in a Porous

Electrode"). The name change was approved in the thlrd-project year to reflect the more

general electroanalytical nature of the mathematical methodology which was being devel-

oped.

Our objective has been to develop a procedure by which electrode reaction kinetic

constants can be extracted from impedance or linear sweep voltammetry measurements on

a porous electrode. The mathematical theory to interpret such measurements on planar

electrodes is well known; however, due to the three-dimensional, distributed reaction dis-

tribution in a porous electrode, it cannot be rigorously applied to this electrode. By using

a tube-analog model for the pore geometry, we have developed such a methodology and it

is reported upon in the following sections.

Our approach has been to develop these tools using simplified redox kinetics (Butler-

Volmer) as the example reaction sequence. It should be emphasized, however, that more

complex reaction expressions can be used within the context of the models with appropriate

modification of the computer programs. We have attempted to write the FORTRAN
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substitution of alternative kinetic equations possible.

Two chemical engineering graduate students have worked on the project. Mr. Andrew

Viner received his MS degree in 1988 for his thesis "A Model of Steady-State mad Impedance

Measurements in Flooded Porous Electrodes," and currently Mr. John Weidner is working

on his PhD dissertation "Linear-Sweep Voltammetry in Porous Nickel Oxide Electrodes"

with an anticipated graduation date of no later than May, 1991. Because Mr. Weidner's

work is still in progress, this "final" report is not complete. In the last section of the

document, the ongoing work is outlined. Upon completion of Mr. Weidner's dissertation,

a copy will be forwarded to the grant monitor, Mr. N. Hagedorn.

The following sections of this report are self-contained documents and are presented

in the chronological order in which the work described in each was done. Each section

has appeared as a paper in a peer-reviewed Journal (Sections 2-4) or is currently being

prepared for submission (Section 5). The financial support of the NASA grant has been

acknowledged in each publication. A short summary of each follows.

The ohmic resistance in a pore will distort the shape of a voltammogram. As a first

attempt to quantitatively understand the phenomena, Section 2 reports upon the ohmic-

distortion effect for thin-layer cells when a reversible redox reaction occurs. A simple-to-

apply correlation to account for the shift in the peak potential as a function dimensionless

solution resistance is presented. The theoretical calculations based on porous electrode

theory provide the basis for the correlation.



The MS thesis of Mr. Viner provided an extensive theoretical foundation to calculate

the steady-state and transient response of a porous electrode. Two-dimensional, analytical

solutions to the diffusion and Laplace equation in the tube geometry were developed, and

we demonstrated how the two may be used in a numerical calculation to determine current-

voltage behavior when coupled through the reaction-kinetic expression. Section 3 reports

upon a specific electroanalytic measurement, the open-circuit impedance, and illustrates

how the interaction of ohmic, kinetic, and mass-transfer resistances influence the results.

With this methodology available to separate the various resistances, kinetic constants can

be extracted from the measured impedance.

During the course of developing the mathematics to predict the voltammogram for a

porous electrode, we discovered a minor limitation of the classic Nicholson-Shain treatment

for voltammetry at a planar electrode. In their work, the assumption was made that the

reactant only is present at the onset of the sweep. From our mathematical development,

we determined that if both reactant and product are initially present at comparable con-

centrations, the peak potential and current for a reversible redox reaction are significantly

changed from that predicted by Nicholson and Shaln. In Section 4, we report upon this

work which is of importance to the electroanalytical community. The magnitude of the

effect is a function of the ratio of the initial reactant-to-product concentration ratio times

the square root of the ratio of the two diffusivities, and a correlation for the peak potential

and current is presented as a function of this variable.
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The peak potential and current for linear sweep voltammetry in a pore when ohmic,

kinetic, and mass-transfer resistances may all be of importance is presented in Section 5.

Again, correlations are presented, based upon the theoretical calculations, which enable

the determination of the kinetic constants. This Section is nearly ready for submission for

peer review except a few additional calculations must be made, as appropriately noted in

the Section.
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ABSTRACT

A continuum-model approach, analogous to porous electrode theory, has been

applied to a thin-layer cell _f rectangular and cylindrical geometry. A reversible redox couple

is assumed, and the local reaction current density is related to the potential through the

formula of Hubbard and Anson for a uniformily accessible thin-layer cell. The placement of

the reference electrode is also accounted for in the analysis. Primary emphasis is placed on

the effect of the solution-phase ohmic potential drop on the voltammogram characteristics.

Correlation equations for the peak-potential displacement from E °' and the peak current are

presented in terms of two dimensionless parameters.



ttinman, Pons,and Cassidy{1]discussedthe effectsof solution-phaseresistanceon

the shapeof the voltammogramof a reversibleredox couplein a thin-layer cell. In this cell, the

working electrodewasseparatedfrom an insulating planeby a thin gap filled with electrolyte,

and a referenceelectrodewasplacedbetweenthe leadingedgeof the workingelectrodeand the

counterelectrode. Hubbard and Anson's [2] formula for the current in a uniformly accessible,

thin-layer cell wasused to represent the surface impedancein an equivalent network model.

Both a rectangular and a circular geometry for the working electrode were considered. In

both cases, the peak potential of the reversible voltammogram was shown to be displaced

from E°'--where it otherwise would be located--by solution-resistance effects. The circular

electrode was found to be the better of the two in that, given equal areas, the current wave

was less distorted.

In this communication, a one dimensional, porous-electrode model [3] of the cell

will be used as an alternative to the network model of Hinman et al. The current-voltage

behavior was found, as expected, to be identical in the two approaches. However, in formu-

lating the differential equation of the present work, two dimensionless parameters are shown

to govern the behavior of the voltammogram. We present correlations which show how the

peak-potential displacement from E °' and peak current are dependent upon these two param-

eters. With such relationships available, a thin-layer cell may be, for example, designed with

a known deviation from ideal behavior.
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MODEL FORMULATION

Consider the rectangnlar thin-layer cell shown in Figure la with the reference

electrode located at x = -XnE. Because the cell gap is much smaller than the electrode length,

the potential distribution in the electrolyte is assumed to be one dimensional and dependent

only upon x. A differential conservation of charge equation may be written as

h _i" - io (1)
dx

where h is the gap height, i_ is the current density in the solution phase, and in is the reaction

current density--with a cathodic reaction current being positive. Subject to the assumptions

and limitations discussed by Hinman ct al., the local reaction current density is calculable

from Hubbard and Anson's formula for the current as

nF

:: (2)

Because the potential is position dependent, so must be i, according to equation 2. If ohm's

law is used to relate i, to the solution potential gradient (i0 = _VE where E is the potential

difference between the working and a reference electrode located at position x), the resultant

dimensionless differential charge-conservation equation may be written as

d" E" cE"
- 0 (3)

dX 2 [1 + e_'] 2

where the dimensionless groupings are defined in the nomenclature. The two requisite bound-
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ary conditions reflect the insulating wall at the far end of the working electrode (equation

4a), and the pure ohmic w_ltage loss from the reference electrode to the leading edge of the

working electrode (equation 4b).

dE"

dX = 0, X = 1 (4)

dE*

E' = E'. +,TX-, X = 0 (4)

Upon specification of the applied voltage, E_,pj,, the reference electrode location 7, and the

parameter 0, the nonlinear ODE was numerically integrated using the technique given by

Newman [4]. With the p,,tential distribution available, the cell current is found by numerical

integration of equation 2 along the electrode surface. If the current is normalized by the

maximum at E°' in the absence of resistance effects, the result is defined as I and may be

calculated from

1 eE" ]2dXI = 4 [1+ :" (5)

If a circular working electrode is considered (Figure lb), the dimensionless charge-conservation

equation may be written as

( dE' :"1 d X = -0 (6)
X dX dX ] [1 + eE'] 2

with boundary conditions

dE"
=0, X=O (7)

dX

10
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dE"

E' : - ln-r X = 1 (7)

Numerical integration of equation (6) using Newman's technique enabled a calculation of the

integral current as a fimction of the applied voltage and the two parameters 0 and 7.

RESULTS AND DISCUSSION

Calculations using tile pore-analog model result in voltammograms identical to those

reported by Hinman et ai. from a network model. For a circular electrode, Figure 2 illustrates

the shape of the voltammogram for the anodic portion of the scan (0 < 0). On Figure 2a is

shown the dimensionless current vs applied voltage for various values of the parameter 0 with

the reference electrode located at 7 = 1. Figure 2b presents the same calculation for 101 - 10,

but with the reference electrode located at various positions upstream from the leading edge

of the working electrode. The parameter 0 is a measure of the relative importance of ohmic

resistance. For [0[ much greater than one, the voltammogram becomes distorted; but if J0{

is 0(1) or less_ the voltammogram assumes the symmetric Nernstian behavior. For example,

even at [01 = 10 with -? -- 1, the peak potential is displaced only 8 mV from E °' (25°C, n =

1); whereas at 10] -- 100 the displacement is 43 mV, and the wave is severly distorted. As the

reference electrode is moved farther from the leading edge (Figure 2b), the peak displacement

and wave distortion become more pronounced at any value of 0.

The peak current is dependent upon 0 but not 7; whereas the peak potential is sensitive

11
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to both. The identical behavior is found in the rectangular electrode , but the current-wave

distortion occurs at lower 101 values in this geometry.

A large number of calculations were performed to generate a relationship between the

peak potential and current and the two parameters 0 and 3'. An empirical relationship was fit

to the data as reported below

IOI (8)
IE;I= 1/c(7) + lOl/bC-y)

where b(3') and c("/) are polyn,:,mial functions of 3' as given by

Rectangular electrode:

b(7) = 6.9811 4 26.62997 - 0.066057 _ + 7.084 x 10-473 (g)

c(7) = 0.09,168 + 0.26217 + 1.694 × 10-_72 - 1.314 × 10-473 (10)

Circular electrode:

b(7 ) = -23.2683 + 29.42297 - 3.320972 + 0.134273 (11)

c(7) = -0.0765 + 0.13187 - 0.0182172 + 9.183 × 10-473 (12)

Figure 3 illustrates these correlations for E_ in comparison to the numerically calculated values.

The discrepancy between the two is seen to be the largest when the reference electrode is placed

at the leading edge and 1Ol is less than 1. However, at these values of 7 and 6, wave distortion

would be difficult to measure experimentally and is not important.

The peak current, Iv, was also empirically correlated with O for each electrode geometry

and is given below.

14
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Rectangular cell : lp = 1 - 6.237 x 10-310[ °'gs' (13)

Circular cell: Ip = 1 - 9.724 × 10-4[0} L2xg (14)

The correlations may be used, for example, to estimate the size of an electrode wh,ich

can be used in a particular media to maintain the wave-distortion at an acceptable level, or

to anticipate the distortion of the wave due to reference electrode placement. It must be

emphasized that these relationships are empirical and should be used with caution outside of

the range used to establish the equations: 0.1 < 10[ < 102; 0 < 7 < 10. This is not a severe

limitation considering that at low 161 the distortion is unmeasurable, and no experiments

would likely be carried out at 101 values much larger than 100 where the current wave is

grossly distorted.
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NOTATION

cL

D

E

E ol

E °

E;

E °
app

F

h

i,

I

Ip

L

n

r

R

initial concentration of oxidized species of redox couple, mol/cm 3

diameter of circular electrode, cm

working electrode voltage relative to reference, V

formal potential of redox couple, V

dimensionless voltage, nF(E-E°')/RT

dimensionless voltage at peak current

dimensionless voltage applied at reference electrode

Faraday's constant, C/equiv

cell gap height, cm

reaction current density, Eqn. 2, A/cm 2

solution current density, A/cm 2

dimensionless current:

rectangular cell--fo L i,,dz/[(nF)2vC°o_,hL/4RT]

circular cell--j'o n/2 rinar/[(nF)'vC_=(D/2)'/SRT]

dimensionless peak current

rectangular electrode length, cm

number of e- in redox couple

radial coordinate, cm

gas constant

18



RRE

T

X

XRE

X

_ re_e_k_

7

/g

v

radial position of reference electrode in circular cell, cm

temperature, °K

rectilinear coordinate, cm

position of reference electrode in rectangular cell, cm

dimensionless coordinate:

rectangular cellmx/L

circular cell--2r/D

dimensionless location of reference electrode:

rectangular cell--xR_/L

circular celI----2RRE/D

solution conductivity, (ohm.cm) -1

negative of voltage scan rate, -dE/dt, v/s

dimensionless resistance:

rectangular cell--

circular cell-- v'nFO*_'(O[2)2
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ABSTRACT

A cylindrical tube is used as the basis for a two-dimensional mathematical

model to calculate the impedance of a flooded porous electrode. The model incorporates

charge-transfer, mass-transfer, and ohmic resistances to obtain the axial and radial de-

pendencies of the concentration and potential profiles. A linearized Butler-Volmer kinetic

expression for a simple redox reaction O + e _ R is used, in conjunction with analytical

expressions for the surface concentration and overpotential, to compute the open-circuit

impedance. The results of the two-dimensional model, which omits double-layer charg-

ing, are compared with the results of a more standardly applied one-dimensional model,

in which radial variations are neglected, with and without double-layer charging. The

simpler-to-apply one-dimensional model is found to be satisfactory when mass-transfer

and ohmic resistances are small with respect to charge-transfer resistance. The omission

of double-layer charging does not introduce any error into the two-dimensional model in

the frequency range in which capacitive-like effects are caused by mass-transfer limitations.

21



1 INTRODUCTION

Impedance spectroscopy is a powerful tool for analyzing the kinetics of electrode reac-

tions, but its application to porous electrode systems has been hindered by the lack of

a comprehensive model for analyzing the frequency-response data. This paper presents a

two-dimensional mathematical model of mass and charge transport in a tube-analog model

of a pore in a porous electrode and has been used to predict the current density distribution

in response to both a steady and a sinusoidally oscillating potential for a redox reaction

0 + e _ R. The details of the model are described below, along with sample results for

the open-circuit impedance and a comparison of results from the two-dimensional model

with a more simplified one-dimensional model. The details of the steady-state model are

presented elsewhere [1] .

Considerable effort has been invested in the analysis of impedance measure-

ments for porous electrodes; however, mathematical complexity has generally limited the

development to one-dimensional models. One of the early workers in this area was Win-

sel [2] who solved the two-dimensional Laplace equation for the potential distribution in

a cylindrical pore given an arbitrary expression for the current at the pore wall. He pro-

posed a constant interracial impedance comprised of a sum of parallel impedances arising

from double-layer capacitance and coupled diffusion and reaction impedances. A linearized

Butler-Volmer expression was used to describe the current-overpotential relation. Winsel

22
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simplified the problem by approximating the radial diffusion of reactants and products as

simply linear diffusion to and from a flat plane, thereby limiting the model to large pore

diameters and high frequencies.

Darby [3,4] developed a model for the diffusional impedance based on a radiatly-

averaged concentration while ignoring ohmic drop within the pore. De Levie [5] considered

the case in which only kinetic resistance was significant. Keddam et al. [6] proposed

a one-dimensional model incorporating both charge- and mass-transfer resistance while

ignoring the effects of ohmic resistance. One of the most ambitious models was that

of Rangarajan [7] who developed a one-dimensional model for the impedance in a pore

including charge- and mass-transfer resistance extending from within the pore to a distance

outside of the pore. A linearized Butler-Volmer expression was used to describe the

current-overpotential relation. Keiser et al. [8] incorporated a variable-pore diameter into

a one-dimensional microscopic model of a pore. Cachet and Wiart [9] developed a one-

dimensional model similar to that of Rangarajan, extending it to conditions far from the

equilibrium potential.

Most of these models are based on a one-dimensional description of the con-

centration or potential field within the pore. The present work follows the course first

set by Winsel [2]; i.e., development of a two-dimensional model of the concentration and

potential fields in a cylindrical pore. In the present case, the local impedance is a function

of distance from the pore entrance; however, for the sake of simplicity, doub|e-layer capac-

23



itance has been ignored. (Note, however, that an analytical expression has been obtained

to incorporate the effects of double-layer charging [see Reference [1]]).

The details of the two-dimensional model are presented below, along with the

description of a one-dimensional model which includes double-layer charging. A sensi-

tivity analysis is presented to describe the results of the two-dimensional model under a

variety of conditions. A comparison of the impedance predictions from the one- and two-

dimensional models indicates the conditions under which the approximations in the one-

dimensional model fail. Finally, impedance predictions from the one-dimensional model

including double-layer charging are compared with those from the two-dimensional model

to assess the impact of neglecting double-layer charging from the two-dimensional model.

2 THEORETICAL DEVELOPMENT

2.1 Assumptions

For the purpose of model development, a porous electrode is assumed to consist of a solid

phase permeated by a series of identical, non-interconnected cylindrical pores that are filled

with an electrolyte solution. Since all tubes are equivalent in this idealized electrode, the

behavior of the complete electrode will be the same as that predicted for a single tube.

Alternatively, it is possible to predict the performance for several different tube sizes and

then combine the results based on a given pore-size frequency distribution, as suggested

by Winsel [2] and de Levie [5].

24
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A cylindrical tube of diameter d extends from z = 0 to a distance L within the

electrode. At the pore aperture (z = 0), the tube is exposed to the bulk solution containing

both oxidized species O and reduced species R. The potential at the inlet of the tube is

potentiostatically controlled. The inner wall of the tube is electroactive and the end wall

(z = L) is inactive. Other assumptions are:

Ii

2.

.

Q

The solid phase is isopotential.

The reaction is a simple redox reaction with both reactant and product soluble

(O+e R).

No other processes limit or alter the rates of mass transfer and charge transfer (i.e.

no adsorption or desorption and no preceding or following reactions).

The electrolyte is well supported so that the solution phase potential is governed by

the Laplace equation and migration is insignificant.

5. Diffusion is the only mass-transfer mechanism.

6. There is no uncompensated resistance from the reference electrode to the pore aper-

ture.

7. The reactant and product species have equal diffusivities (g)o = DR = _3).

8. The electrolyte reservoir at the pore aperture is well mixed so that there is no mass-

transfer resistance from the bulk solution to tube inlet.

. The potential and reagent concentrations are radially uniform at the mouth of the

tube.

Assumptions 1-5 are common to most models of porous electrodes, although some models,

such as that of Grens and Tobias [10,11], include the effects of migration and variable

conductivity. Grens [12] addresses the importance of these and other assumptions for the

prediction of steady-state current density with a one-dimensional model. For the systems to
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be considered here (i.e. simple redox reactions in well-supported electrolyte) it is reasonable

to neglect those effects. Assumptions 6-7 limit the scope of the model slightly, however,

they are invoked for the sake of mathematical convenience. If different diffusivities were

included for oxidized and reduced species, then separate concentration profiles would result

for each and the amount of "bookkeeping" required in the calculations would be increased.

The greatest limitations in the proposed model arise from Assumptions 8 and 9. An

approximate boundary condition could be invoked to eliminate the need for Assumption 8

as was done recently in a similar analysis [13]. A more difficult problem arises in trying to

eliminate Assumption 9. In reality, the concentration and potential gradients at the inlet

of the tube will be radially dependent. The concentration gradient will be greatest near

the wall of the tube and decrease towards the centerline of the tube. A rigorous treatment

of this problem would require the simultaneous solution of the diffusion equations inside

and outside of the tube -- a fairly intractable problem.

2.2 Solution to Transport Equations

The development of the impedance model begins with the general time-dependent de-

scription of mass and charge transfer in a cylindrical tube. Once the transport equations

have been solved, then the specific case of impedance measurements can be simulated by

application of a sinusoidal potential at the aperture.

The concentration profile for both species of the redox couple is governed by

26



Fick's second law

8Co _ _)V'Co (1)
8t

where Co is the 0 species concentration and _ is the diffusivity. The concentration is

initially uniform throughout the tube and equal to the bulk concentration. The concentra-

tion at the inlet of the tube is constant at the bulk concentration and there is no diffusion

through the end wall of the tube. In the radial direction, the concentration profile is sym-

metrical about the centerline of the tube and the flux at the tube wall is proportional to

the reaction rate. These constraints can be expressed mathematically as

(la) _= 0; Co(,.,_) = c_,

(lb) z = 0; Co(,',o) = C_, (zd) _ = 0; eeo..= 0

77oc___(lc). = L; _ - o (Ze) _ = e/2; - o, = J(",t)
8z --

where C$ is the bulk concentration of the species and j(z,t) is the molar reaction flux at

the wall of the tube.

Laplace's equation governs the solution potential 42

0 = V"¢2 (2)

As with the concentration profile, the potential is symmetrical about the centerline of the

tube and the current density at the tube wall is the sum of the reaction current density

and double-layer charging. It is assumed that no current flows through the end wall of the

tube and at the inlet the potential varies according to a known time-dependent function.

27



These constraints can be expressed mathematically as

(2c) r = 0; _ - 08r w

(2d) r = d12; sa#___z= i,_(z,t) + C,_a(t_-_ *')
8_

where _I,_(t) is the applied potential at the mouth of the tube, s is the solution conductivity,

i,,(z,t) is the reaction current (related to j(z,t) of Equation le by Faraday's law), Cat is

the double-layer capacitance, and 41 is the solid phase potential (assumed constant).

The concentration and potential profiles are obtained by first solving Equa-

tions 1 and 2 for a delta function distribution both in space and time for j(z, _) and i,,(z, t).

A separation of variables and Laplace transform procedure was used to find these solutions

as described in Reference [1]. The resulting dimensionless concentration and overpotential

are indicated by 0(R, Z, Z0, r) and 0(R, Z, Z0, r), respectively. A convolution (in time) and

superposition (in space) integral was then applied to write 0 and 77for any arbitrary j(z, t)

and i,,(z, _) as

/0Yo(n,z,_) = O(R,Z,Z.,_- _-)S(Z.,_-)d,-dZ° (3)

/oY,7(R,z,i) = (41

where ff(Zo, r) and Z(Zo, r) are the dimensionless analogs of j(z,l) and i,,(z, 0 as defined

in the Nomenclature section. Note that the dimensionless time scale is different in the two

equations; a characteristic diffusion time (_D) and a double-layer charging time (_a,) are

used. Further simplification is possible by recognizing that only the quantities at the tube
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wall are of interest. Therefore, we define

and write

0_(z,o = 0Ca= 1,z,r)

rhoCZ,i ) = r/CR= 1,Z,_)

0_(z,_)

and

...,. oo ,.7.(Zo, T) sin/3. Z0
_n=1 7

sin/3. Z e -B_(_-')

C5)

2 _ t,(_.) sin_.Z f, _,7._(z,_) = ,7°(_)+ _ _-z.-O_.) ,7*(_')e-""('-")d,"

where the analytical expression for _ and 0 have been used and/3- = (n- _):¢/7 , gj are

the zeroes of the Bessel function Jl(_), I0(u) and ll(u) are modified Bessel functions, and

o',_ = B.I1(3,,)/Io(3,,). No further integration of Equations 5 and 6 can be carried out until

functional dependencies are specified for ,.7(Zo, _) and 2"(Z0, i). At steady-state conditions,

equations 5 and 6 are linearily related because both the potential and concentration profile

are governed by the Laplace equation and have similar boundary conditions; hence, only

one is needed to cMculate the reaction profiles in this circumstance.

In summary, Equations 5 and 6 give the expressions for the concentration and

overpotential at the tube wall, respectively, and were generated by the solution to the

two-dimensional fields subject to the assumptions and boundary conditions listed above.
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Note that neither the overpotentlal function r/°(i), the mass flux J(Z, [), nor the reaction

current Z(Z, _) at the wall have been specified in these equations and can be any arbitrary

function. Of course, there is the requirement that mass flux and reaction current must be

proportional, according to Faraday's law. In the most general case, the electrochemical

reaction rate is a function of the concentration and overpotential at the tube wall through

the kinetic expression. This introduces two levels of complication in the use of Equations 5

and 6. First, the kinetic equations are typically non-linear and second, the equations are

coupled, since 3"(Z, _) and Z(Z, i) are both functions of 8w and r/w. An added complication

arises from the two different characteristic times used to make these equations dimension-

less; nevertheless, Equations 5 and 6 can be evaluated numerically. A considerable savings

of computation time is realized by linearization of the kinetic expression. For the purpose

of model development, it is further assumed that the capacitance of the double-layer is

negligible, so that only faradaic current need be considered. This assumption simplifies

the analysis because the double-layer charging time scale is eliminated; however, it has

the disadvantage that it eliminates double-layer charging from the impedance model and

consequently limits the frequency range over which the model is applicable. Additional

analysis has been completed to include double-layer charging in the impedance model at

the expense of added complexity [1]; however, the results presented below do not include

it.

Elimination of double-layer charging does not affect the expression for the con-
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centration profile (Equation 5), however, the overpotential equation will be different. The

modification is accomplished by dropping the second term on the right side of boundary

condition 2d. With this simplification, the solution to Equation 2 at the pore wall is

_(z,r) =_°(0 - _ _- _.r-i_.) .in_.Z Z(Zo,_)sin_.ZoeZo (7)

This result is equivalent to Equation 9 of Winsel [2], in which double-layer charging is also

ignored. With this result, the time dependence is now entirely in terms of the diffusion

time scale.

2.3 Impedance Calculation

In principle, Equations 5 and 7 could be used to calculate the current-voltage-time behavior

for any arbitrary imposed voltage and kinetic equation. However, the numerical evaluation

of these equations would be quite difficult since it involves the double integration of the

product of infinite sums (Equation 5). In addition, for a non-linear kinetic equation (e.g.

the Butler-Volmer expression) an iterative procedure would have to be applied at each

time step in the calculations. Fortunately, this calculational burden can be avoided in

calculating the impedance at the open-circuit potential as shown below.

For small-amplitude oscillations about an arbitrary steady-state potential, the

dimensionless mass flux can be approximated by a first-order Taylor-series expansion

j(0,_) = j. + _,(0 - 0.) + _,(_ - _.) (8)
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where ft, is the mass flux at the steady-state potential, and al and ct2 are the partial

derivatives of ,7 with respect to 8 and 77, respectively. For the case of osciUation about the

open circuit potential J,, = 0,, = ,7. - 0; however, for the sake of generality we will retain

the form

= j°+ + (9)

where if° incorporates all of the steady-state terms. A similar equation can be written for

the reaction current density

Z(O,_) = Z° + _.O.(Z,t) + a,_.(Z,O (10)

where 2TM is defined in the same manner as if°.

The definitions of the Taylor-series coefficients ai depend on the kinetic expres-

sion. For a system governed by the Butler-Volmer expression, the explicit expressions for

ch and c_2 are

Ot 2

(o:)

-
= F2 \c_(CSe"'"" + e-"c"') (11)

=-r, a,(l - a_..C_,°_e"'"" + ac(1 + #..)e -'c"" (12)
$.

where F2 is a constant that relates the reaction current to mass flux and the quantities

_A and c_c are the anodic and cathodic transfer coefficients, respectively. Civen that the

reaction current and mass flux are related by Faraday's law, the ai are related

{2 3

_4

OI) = -r,a, (13)

- = -I'1_2 (14)
O.
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For oscillations about the open-circuit potential, 77. = 0 and 0. = 0 so the al

are constant. However, for conditions other than the open-circuit potential, r/,, 8,, and

hence the al are functions of position by Equations 1 1 and 12. Consequently, the quantities

J° and 2"°, are also functions of position Z and the analysis that is required becomes much

more difficult than that which is presented below. Therefore, we shall proceed on the basis

that if°,2 "°, and the ai are constants, assuming that an appropriate (approximate) average

values can be used when 77. _ 0.

Equation 10 can be integrated over the pore length to yield the total current

once expressions are found for 8w and '7,-. The appropriate functional forms are based on

an expansion in the eigenfunctions of the partial differential equations (Eqns. 1 and 2). In

this case

oo

o,,,(z,[) = _ b,,(_)sin#,,Z (15)
n=l

oo

,MZ,{) = ,f(_) + _ a.(f) sin#.Z (16/
n-----I

The coemcients a.(_) and b.({) are unknown functions of time which can be determined by

substituting the linearized current and flux (Eqns. 9 and 10) and the assumed expressions

for 8_, and '7,o (Eqns. 15 and 16) into Equations 5 and 7. Details of the manipulations are

summarized in the Appendix. The total dimensionless current density is thus calculated

as

ZT = [Z"+ _30.,(Z)+ '_,'7.,(Z)]dZ
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(17)

where explicit expressions for _(t-) and b.(t-) are given by Equations 55 and 56 in the

Appendix. Taking r/o, = 0, Equation 17 can be rearranged to yield

Ir = Acoswt + Bsinwt (18)

- _/_ + _ cos(o,t - ¢) (19)

where

¢ = tan-l(/_/A) (20)

[ 1 >]
+_-_,"°Z_,N/.:, = D'(._.).L+_' (21)

= -y--_,,,7o= \Z.] =
1 Skn

D*(,_l=,_) 81. "I- 9 2
(22)

p,, = a,(1 a4 )
a4 q- O'n

(23)

(24)

(25)
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do(X) and Jl(x.) are Bessel functions and 8k,, are the zeros of the function D(8) given

by equation 52 in the Appendix. Finally, the dimensionless impedance Z can then be

calculated as

r]° - Z = Igle j¢ (26)
2"-

= ZR, + jZb,, (27)

where

ri: (28)Izl - ,4_4_+ _2

Several observations can be made concerning these equations. First, values of

functions .4 and B, and hence Z, are determined by the three dimensionless groups at, a4,

and "r (length-to-radius ratio) and the dimensionless frequency 3, which is related to the

dimensional frequency f by the expression

_, = 2./(d/2)_ (29)
D

The quantities al and a4 can be interpreted as

mass-transfer resistance

al - charge-transfer resistance

ohmic resistance

a4 -- charge-transfer resistance

These definitions will be useful in the interpretation of the results presented in the Discus-

sion section.
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3 ONE-DIMENSIONAL IMPEDANCE MODEL

The two-dimensional model presented above is a rigorous treatment of transport in a

cylindrical tube, however it is incomplete due to the omission of double-layer charging

effects. In order to estimate the seriousness of that omission, a simpler, one-dimensional

model was developed with double-layer charging included. A comparison of impedance

predicted for the two different models will provide insight into the importance of double-

layer charging. The comparison will also provide a means to assess when the radial effects

neglected by the more commonly used one-dimensional models are important.

The one-dimensional model material- and charge-conservation equations in a

dimensionless format are

00 020

O_ - OZ 2

020

- OZ 2 2alO-2a2_

O0

Z=O; 0=0 Z=7; oz-O

(30)

and

Or/ O2r/
0_" -- '_Z'] + 4_a40 -- 2,,_a4_ (31)

Z=O; ,7=e i'_ Z=7; 0-Z=0

where Zld is the reaction current at position Z and the concentration and overpotential

are radially-averaged quantities. For convenience, Equations 30 and 31 were derived with
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the same coefficients ai as appear in the two-dimensional model. An important feature of

Equation 31 is the inclusion of double-layer charging, which gives rise to the parameter

_ _(d12) (32)
2C_

where C_t is the double-layer capacitance (per unit area) of the interface. In effect, A is

the ratio of the diffusion time scale to the double-layer charging time scale.

The solution of these equations is straightforward and is found as

0 = GI(Z)e j_'r (33)

77 = G_(Z)eJ _'_ (34)

where

a,(z)
2_2 "cosh[rl(Z - 7)]

cosh(r17)

cosh[r,(Z - 7)1]

- _o-_,_ j (35)

a,(z) ,[_,_- d ('; -(2_, + j_ )) coshl,,(Zcosh(,,_)_)]

cosh[r,(Z -7)]]
- (_ -¢2_,+j_)) _¥) j (36)

and

(37)

(38)

(39)
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o' )II = 4a,(a, + 2a,) - -_- q- + 2a4 j_ (40)

The average dimensionless current density is the sum of the reaction current and the

double-layer charging current

The impedance is computed as the ratio of the potential to the resulting current. After

manipulation the complete expression for Z becomes

r_ j
(42)

Note that the one-dimensional current density given by Equation 41 is defined

on the basis of the aperture area of the pore (Trd*/4) whereas the current density resulting

from the two-dimensional model is based on the total internal area of the pore (lrdL).

Consequently, the dimensionless impedance computed by the two-dimensional model must

be divided by 2 in order to compare with the results of the one-dimensional model.

4 RESULTS AND DISCUSSION

The approach taken in this study was to conduct a parametric evaluation of the two-

dimensional impedance model for 27 different combinations of the three governing dimen-

sionless groups: al, a4, and 7. Three values of aspect ratio (3' = 5, 20, 50) and three values
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of the resistance parameters (al, a4 = 0.1,1.0,10.0) were used in the calculations. These

values span the range from short pores (7 = 5) to fairly long pores (7 = 50), and a wide

range of resistance ratios. A summary of the results of the parametric evaluation will be

presented below, followed by a comparison of the results from the two-dimensional model

with those obtained from the one-dimensional model in the limit of negligible double-layer

capacitance. The comparison of the two models will indicate when it is appropriate to

ignore radial dependencies of concentration and overpotential. Lastly, the results of the

two-dimensional model will be compared with those obtained from the one-dimensional

model when double-layer charging is included so as to assess the importance of its omis-

sion from the two-dimenslonal model. Complete details on the results of the parametric

study and further discussion of the numerical calculational procedure can be found in

Reference [1].

4.1 Parametric Evaluation of the Two-Dimensional Model

4.1.1 Aspect Ratio

The effect of aspect ratio (i.e., pore length) is illustrated in the Nyquist plot in Figure 1.

Dimensional impedances can be obtained by multiplying the dimensionless quantities by

d/2_ (with units of fl-cm2). A total of 36 points were calculated for each curve, spanning

12 decades of frequency. A spline routine was used to draw smooth curves between the

points. A limited number of calculated points are shown explicitly in the Figure with the
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corresponding dimensionless frequencies.

short, medium, and long pores.

The three curves in the Figure correspond to

The model shows that the effective capacitance and resistance are both affected

by pore length. The maximum value of ZI,_ decreases with increasing aspect ratio as does

the low frequency limit of ZR,. The curves for 3' = 20 and 3' = 50 converge at a frequency

of _ = 0.3, suggesting that both behave as semi-infinite pores above this frequency. That

is, the impedance predicted at frequencies above _ - 0.3 for a pore with an aspect ratio

of 20 is the same as that expected for a semi-infinite pore when al = a4 = 0.1.

An interesting feature of Figure 1 is the inflection that occurs in the curves for

3' = 20 (between _ = 0.03 and 0.3) and 7 = 50 (between _ = 0.003 and 0.03). For some

cases reported in Reference [1] (e.g., when al = ct4 = 0.1 and 3' = 50), a local minimum

occurs, giving the appearance of two separate loops that are added together. The feature

is believed to be real (as opposed to a numerical aberration), since similar behavior is

predicted by the one-dimensional model of Rangarajan [7] and the one-dimensional model

described in Section 3. Presumably the inflection and the local minima are manifestations

of the complex, non-spatially uniform interacions between kinetic, ohmic and mass-transfer

effects.
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4.1.2 Mass-Transfer Resistance

The effect of mass-transfer resistance on the impedance (as measured by the parameter

c_1) is shown in Figure 2 for a pore aspect ratio of 20 when ohmic resistance is small

with respect to the charge transfer resistance(_4 = 0.1). Note that the smallest loop in

Figure 2 (c_:= 0.1) is identicalto the loop for 7 = 20 shown in Figure 1. As expected,

the maximum values of Zi_ and Zz,_ increase with increasing mass-transfer resistance

(i.e.c_i). However, the high frequency limit of ZRe is independent of the mass-transfer

resistancc. The reason for this behavior is that in the limit as _ _ oo, the reaction

is confined to a thin region near the inletof the pore where the concentration is fixed

through the boundary condition,hence, the high frequency limitof ZRe is not dependent

upon mass-transfer resistance.When c_i= 10, neither the low-frequency limit of ZR, nor

the maximum value of Zz,,,is evident, since they occur at frequencies below the lowest

value used in the calculations.

4.1.3 Ohmic Resistance

The effectof ohmic resistanceon the impedance of a tubular pore isillustratedin Figure 3.

The curves in the Figure for a4 = 1 and c_4 = 10 are scaled by the factors 10 and 50,

respectively,to make them more easilyvisibleon the plot. In fact, the ZRe values for

a4 = 10 are actually less than those for c_4= I, which, in turn, are lessthan those for

c_4= 0.1. This apparently anomalous behavior is actually an artifactof the manner in
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which ZR, is made dimensionless. Specifically, the dimensional impedance is multiplied by

2_/d. Therefore, as the conductivity decreases, the product of the dimensional impedance

and conductivity also decreases. The trend of the capacitance is intuitive: as the ohmic

resistance increases, the resulting faradalc and capacitive current decrease.

4.2 Comparison of One- and Two-Dimensional Models for Cal-

culation of the Impedance

The major advantage of the two-dimensional model is that it can be applied in cases

where the radially averaged quantities inherent in the one-dimensional models result in

poor approximations. Furthermore, with the two-dimensional model available, it can be

used to assess the error in one-dimensional approximations. The major disadvantage of

the two-dimensional model is that it requires a greater amount of computational effort.

The purpose of this section is to assess when that effort is necessary and when the one-

dimensional approximation is sufficient. For the results described here, the double-layer

capacitance in the one-dimensional model was set to zero.

4.2.1 Parametric Test of One-Dimensional Impedance Model

The one-dimensional model is expected to fail when radial gradients become large (i.e.

when mass-transfer and ohmic resistances are large with respect to the charge-transfer

resistance). The error in the impedance resulting from the neglect of radial gradients in
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concentration and overpotential profilesis illustratedin Figures 4 - 6, which compare

the resultsof the two-dimensional model with those from the one-dimensional model. The

data presented in Figure 2 are used as the example for comparison. As expected, when

mass-transfer resistanceis small with respect to charge-transferresistance(i.e.al "- 0.1,

Figure 4), the one-dimensional model mimics the two-dlmensional model quite well. The

peak value of Zi,,_appears to be the same for the two but the real component of the

impedance is slightlyshifted for the one-dimensional model. At higher values of mass-

transfer resistances(Figures 5 and 6), the absolute differencebetween the predictions

for the two models increases. Whereas the maximum value of Zi,,_is approximately the

same for the'two curves in Figure 4, the maximum value for the one-dimensional model

islower as the mass-transfer resistanceincreases.It may be expected that an increase in

the mass-transfer resistancewould yield an increase in the capacitive component of the

impedance. However the one-dimensional model tends to dampen the effectsof mass-

transferresistanceby equating the wall concentration of reactant specieswith the average

value at that location.There isa small differencebetween the values ZR_(_ _ co),however

itisnot evident at the scaleshown in the Figures. Although the curves in Figure 6 do not

show the low frequency loop_ itisevident that the same trends willapply.

The effectof ohmic resistanceon the one-dimensional model is illustratedin

Figure 7,which shows a log-logplot of the impedance modulus as a function of frequency.

The three pairs of curves in the figure are the resultsfrom the two-dimensional model
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presented in Figure 3 and the corresponding results from the one-dimensional model. As

a4 increases, the modulus decreases and the slope of the modulus-frequency curve goes

to zero. The zero slope is a result of the fact that the effective capacitive component of

the impedance goes to zero. (The modulus decreasing with increasing a4 is an artifact of

the way in which the impedance is made dimensionless, as discussed in conjunction with

Figure 3.) The results shown in the Figure suggest that the one-dimensionaJ model would

be a poor choice for analyzing data collected from a system with high ohmic resistance.

In many applications, the dimensionless parameter a4 will be less than 1 and

typicaJly on the order of 0.1 or less. Note, however, that it would be an oversight to

ignore the effects of ohmic resistance completely. As an illustration, consider the set of

curves shown in Figure 8, which were obtained with _he one-dlmensional model. At a

value of cz4 - 0.1, ohmic resistance is low with respect to the charge-transfer resistance.

However, decreasing that value by half (i.e. a4 -- 0.05) produces a significant shift in both

the real and imaginary components of the impedance. A ten-fold decrease in c_4 (from

0.1 to 0.01) increases the maximum value Zz,,, roughlythree-fold. In the limit of very low

ohmic resistance, the impedance plot appears quite different from that obtained with what

appears to be a "low" value (i.e. a4 -- 0.1). Therefore, one should use care in applying

models that ignore the ohmic potential drop completely such as that of Keddam et al.I6 ].

Since both the one- and _wo-dimensional models accoun_ for ax/al gradients

in a finite pore, it is intuitive that the agreement between the two models would-not be
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affectedby the aspect ratio and is not discussed further here.

4.2.2 Applicable Parameter Range of the One-Dimensional Model

The results presented above show that the assumption of radially-averaged concentrations

and potentials can be a serious limitation to the one-dimenslonal model. The problem

arises when mass-transfer resistance is high, and concentration gradients extend far from

the wall of the tube. Likewise for the relation between ohmic resistance and the radial

gradient of the potential. Consequently, a radially-averaged quantity can be significantly

different from the actual value at the wall, with the result that the current predicted from

averaged quantities will differ from that predicted from the two-dimensional model.

The problem of radial averaging will be most significant at very low frequen-

cies and/or when diffusion and ohmic resistances are large with respect to charge-transfer

resistance. Based on the results of the parameter study it appears that, over the frequency

range where double-layer charging is not important, the one-dimensional model is an ade-

quate approximation to the two-dimensional model when ohmic resistance is low (a4 < 0.1)

and mass-transfer resistance is low-to-moderate with respect to charge-transfer resistance

(0_ 1 _<_ 1).
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4.3 Assessment of the Double-Layer Effects

The most significant limitation of the two-dimensional model for the impedance calcula-

tion is the omission of double-layer capacitance; however, the one-dimensional model does

incorporate it and a comparison of the two will indicate when the omission adversely af-

fects the results of the two-dimensional model. As described in the preceding sections,

the one-dimensionM model is not without limitations. Nevertheless, for cases where mass-

transfer and ohmic resistances are small relative to the charge-transfer resistance (e.g.

when al = c_4 = 0.1), the one-dimensional model is an adequate approximation to the two-

dimensional model. Therefore, conclusions based on the behavior of the one-dimensional

model in these parameter ranges will be applicable to the two-dimensional model.

The effect of double-layer charging as predicted by the one-dimensional model

is illustrated in Figure 9. The dashed line in the Figure shows the results computed

with the two-dimensional model and the solid line was obtained with the one-dimensional

model, including double-layer effects. For the results shown here, the ratio of diffusion to

double-layer charging characteristic times is A = 2.27 x 106. The two semi-circular curves

obtained in the frequency range _ = 3 x 10 -4 to 30 are identical to the diffusion loops

shown in Figure 4. The large loop at higher frequencies (_ >_ 3 x 104) is a result of the

interaction of double-layer charging with charge-transfer kinetics.

The significance of these results can be seen more easily in Figure 10, which
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shows the modulus of the impedance (IZ[) and phase lag (d) as a function of frequency

for the one-dimensional model with and without double-layer charging as well as the two-

dimensional model. There are two points to be made from these results. First, in the

low frequency range (_ < 104), the one-dimensional model with double-layer charging is

identical to the one-dimensional model without it. The overlap of the results from the

one-dlmensional models is quite evident. The agreement between the two models in the

low frequency range leads to the conclusion that the omission of double-layer charging does

not introduce any error into the prediction of the diffusion loop in the impedance diagram.

By analogy, we can conclude that the results presented for the two-dimensional model are

also correct as presented.

The second important result shown in the Figure is that it clearly illustrates the

wide frequency separation of the diffusion and double-layer loops that appear in Figure 9.

The diffusion effect is confined entirely in the frequency range below _ = 100. That is,

at frequencies above _ = 100 mass-transfer resistance becomes insignificant in the vicinity

of the pore wall. Conversely, the double-layer charging effect is not significant below

frequencies of _ = 104. Thus, for the case considered here, diffusion and double-layer

charging are independent effects which can be considered separately. The fact that the two

curves do not interact with each other arises from the large difference in the characteristic

time scales of the phenomena involved. Diffusion, a relatively slog" process, is important

at low frequencies and insignificant at high frequencies. Conversely, double-layer charging,
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which is a relatively fast process, can only be detected at high frequencies.

The frequency separation between the two loops in the impedance diagram is

solely a function of the parameter A and is not affected by the parameters ctl and c_4.

Changing the values of a: and ct4 have the effect of shifting the curves in the Bode plot

horizontally and vertically, but the shape of the curve is not affected. Consequently, the

parameter A can be used to judge whether or not the omission of double-layer charging

introduces errors into the impedances predicted by the two-dimensional model. Results

of a numerical study show that the frequency separation between the two loops will be

at least one order of magnitude as long as A > 3000. That is, given A _> 3000, then

the double-layer charging loop will not become evident until a frequency that is 10 times

greater than the frequency at which the diffusion loop disappears.

5 Summary

A tube-analog model of a pore was used to develop the two-dimensional, time-dependent

concentration and potential profiles in the pore. Impedance results were computed by

application of appropriate boundary conditions to the solution obtained for the general

problem. A comparison of the two-dimensional model with a one-dimensional model based

on the same assumptions shows that the one-dimensional model is a poor approximation

when mass-transfer and/or ohmic resistance are dominant. In addition, it was found that

omitting ohmic resistance altogether can introduce errors in the computed impedance.

58



Although the model presented above omits double-layer charging, no significant

errors are introduced into the mass-transfer capacitance loop.
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6 APPENDIX

The coefficients a.({) and b,,(/') can be determined by substituting the linearized current

and flux (Eqns 9 and 10) and the assumed expressions for 0,,, and r/,,, (Eqns 15 and 16)

into Equations 5 and 7. When the resulting equations are multiplied by sin/i.Zo and the

orthogonality property of the sinusoidal eigenfunctions is applied, an integral equation is

obtained for b,,(_), and a,_(t) is algebraically related to b,,(/).

b.(0 = _,4 _ (J° + _,_°(,)) + _ (_lb.(,) + _,a.(,))

×e -_:(_-_) × [1 + _e-S_ (_-') dv (43)

L j=l

a_({) - 7(a4 + o',.,) _ + + _a.({) (44)
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where c,, = _,J1(,8,)/Io(_,). The solutions to Equations 43 and 44 are obtainable by

Laplace transform. In Laplace domain Equations 43 and 44 are expressed as

__ + a2¢ ° + +

(1 -x --- + '_-':_•,+#_ _+#_+6_j=l
(45)

Equations 45 and 46 can be manipulated to yield explicit expressions for _,_

based only on the Laplace variable s and the physical parameters of the system; how-

ever, reinversion of that expression would yield an integral that could only be evaluated

numerically. A more useful approach is to invoke the identity relation

1 _ 1 1 /o(z)

z---_+ _ z' 2 = - =/---_(x"--) (47)j=1 + _ 2

This identity was derived by comparing the concentration profile obtained from the steady-

state formulation of the governing equations with that obtained by considering the long-

time response of Equation 5 to a step-change in the mass flux at the wall of the tube. The

two expressions must be identical which results in equation 47. The identity relationship

has been verified numerically [1]. After substitution of Equation 47 into Equation 4.5 and

rearrangement, the resulting expression for b,,(s) is

I 1×_,/;+B_,,(,/;+_'_)+o,,,o(v_+_':) (48)
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Substitution of Equation 46 into Equation 48 and rearranging leads to

L(.,) - _"(") + q'_:'(")
D(s)

(49)

where

2[
_4 -{-crn

(50)

2a2s (1 °'_4 -b _rn
(51)

(52)

Equation 49 can be inverted according to the formula

where D'(s) is the derivative of the function D with respect to s

+ [a, (I a4_o',,) + _] l°(V/_+'_)

+_._)

(53)

and sk,, are the roots D(s_) = 0. The inverted expression for b,({) is:

D'(sk.) + t/°([ - r) _ D'(s_.)
= k=!

where the convolution integral has been applied to the second term in the numerator of

Equation 49. An important point to note about this expression is that it is independent
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of the form of the imposed potential function r/°(/). The only restriction is that the

perturbation must be small so that the assumption of linearity in the kinetic equation

applies.

When a sinusoidal potential function with amplitude r/_ is inserted into Equa-

tion 54, integrated, and transients are eliminated by taking the limit as _ _ oo, then

(55)

The long-time limit of a,,(/) is obtained by substituting the definition of b,,(/') into Equa-

tion 44 and rearranging:

2 [ :Z° a4,(_, + _.)_ + _r/"- _a37r/,, _ N2(sk,,) 1
2 D'(sk,,) sk,,k=l

' a.(_) =

+ sin_ (_3_r/: _: u'(s_-) 1 )2 D'(s_.),_' + sLk=l

_,_n_{a4o_ --_-n,a37o (56)k=, D'(sk,,) _' + s_,.) J

In summary, Equations 55 and 56 can be substituted into Equations 15 and 16

to obtain the stationary-state concentration and overpotential profiles for a reaction oc-

curring in response to a small amplitude, sinusoidally oscillating potential at the inlet of

a cylindrical tube.

It can be shown [1] that all sl,,, are real, negative, and infinite in number

and were found by using standard root-finding methods [14] for low-order roots and an
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asymptotic expansion for largerroots. Thus_ computing the impedance consistsof finding

the roots of the function D(_) defined in Equation 52 and then calculatingthe infinite

sums for use in finding values of .4 and B (Equations 21 and 22). Once these values axe

known_ Z_¢ and Zz,,_can be computed directly.
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Nomenclature

Cdl

Cl

c?
Co

C.

d

10

f
F

Z

{o

zr
z,,

J
J

3,,

L

r

R

T

i

LD

_dt

z

_ Z

Z

'lZl
Zlm

ZRe

double-layer capacitance (F/cm 2)

concentration of species i (mole/cm _)

concentration of species i in bulk solution (mole/era 3)

concentration of reactant O (mole/cm 3)

concentration of product R (mole/cm s)

pore diameter (cm)

diffusivity (cm 2/s)

frequency (Hz)

Faraday's constant
dimensionless reaction current at the pore wMl; _-fTg_2i,(z,t)

dimensionless reaction current for 1-d model, eqn. 41

current density at the pore wall (A/cm 2)

exchange current density (A/cm 2)

dimensionless total current, eqn. 17

dimensionless steady-state current

d2 •

dimensionless mass flux at the pore wall; _.7(z,L)

dimensionless steady-state mass flux

mass flux at the pore wall (mole/cm_s)

length of pore (cm)
distance in radial direction (cm)

dimensionless radial distance; r/(d/2)

ideal gas constant (J/(mole'K))

time (s)

temperature (K)

dimensionless time (on diffusion time scale); t/tD

dimensionless time (on c_pacitance time scale); _/_dl

characteristic diffusion time; (d/2) 2/Z_

characteristic double-layer charging time; C_u(d/2)/_

distance in axial direction (cm)

dimensionless axial distance; z/(d/2)

dimensionless impedance eqn. 26

impedance modulus, eqn. 28

Dimensionless imaginary component of impedance, eqn. 27

Dimensionless real component of impedance, eqn. 27
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GREEK

O:A

O£c

7

F,

F2

?

n2
?sJ

17w

8

8.

/¢

A

Gn

q,,

¢2

02

t_

anodic transfer coefficient

cathodic transfer coefficient

eigenvalues of PDE, (n - _)_'/7

pore aspect ratio; L/(d/2)
nF_Z_C__

,, T

C_Z_.F

zeroes of the Bessel function J,(u)

dimensionless overpotential; .Fi_('1'I- ¢2)
amplitude of imposed overpotentiaJ function

steady-state overpotential

dimensionless overpotential at the pore wail, eqn. 7

dimensionless concentration; c-c.6,0

steady-state concentration

dimensionless concentration at the pore wall, eqn. 5

solution conductivity (ft-Xcm -x)

ratio of the diffusion time scale to the double-layer charging time scale, eqn. 32

B.II(B.)/Io(B.)
solid potential (V)

solution potential (V)

angular frequency of imposed overpotential function (s -1)

dimensionless frequency, eqn. 29
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ABSTRACT

Reported are the theoretically predicted peak potentials and currents for the cathodic

scan of a reversible redox couple over a range of the initial concentration ratio of oxidized-

to-reduced species from zero to infinity. The asymptotic limit for the voltammogram as

the initial concentration ratio approaches zero, along with the infinity limit given by clas-

sical theory, is used to develop empirical relationships which correlate the peak potential

and Current to the initial concentration ratio. Dimensionless peak values measured exper-

imentally for different initial concentration ratios of the ferro/ferricyanide redox couple

are found to agree with those theoretically predicted.
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Introduction

Classical theoretical formulas are available to predict the peak current and potential

at a planar electrode during linear-sweep voltammetry (LSV) for the reversible (Nerns-

tian) reaction

0 + ne- _ R (1)

where O and R are soluble oxidized and reduced species, respectively, and n is the number

of electrons transferred [1,2]. Matsuda and Ayabe [1] and Nicholson and Shain [2] showed

that if the reduced species is present initially in negligibh amounts and the voltage is

swept in the negative direction, the cathodic peak current is proportional to the absolute

value of the sweep rate to the one-half power and the corresponding peak potential is

sweep-rate independent. Matsuda and Ayabe [1] also demonstrated that if the sweep

begins at the equilibrium potential, E.q, the dimensionless peak current and potential

depend only upon the product of two dimensionless ratios, 3'0": the ratio of the square

root of the diffusion coefficients of O and R, 3' - _-o-o/_DR, and the initial concentration

ratio of O and R in the bulk electrolyte, 0" = (C_/C_). Matsuda and Ayabe [1] presented

calculations for the case where 70' _ oo. Left numerically unexamined was the influence

of R when its concentration is not neglig;b|y small. Farsang et aL [3], using the same

formula as derived by Matsuda and Ayabe [1], examined the influence of 70" on the peak

values over the narrow range of 0.22 _< 70" _< 5.5 and found a shift in the potential to

more negative values and an increase in the dimensionless peak current as 3'0" decreased.
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Nicholsonand Shain [2] considered the case of starting the sweep at a non-equilibrium

potential, Ei, in the limit of the reduced species concentration equal to zero (0" - oo).

They obtained a current-potential relationship which is a function of an analogous dimen-

sionless grouping, 70, where 7 is the same as defined above, and 0 is the concentration

ratio at the electrode surface given by the Nernst equation immediately after Ei is ap-

plied. This non-equilibrium initial condition gives rise to a CottreU current in the early

portion of the sweep which they showed does not significantly affect the peak current

or potential as long as 3'0 > 650. This corresponds to starting the sweep at a potential

which is at least 200/n mV (T = 25°C) positive of the peak potential.

In what follows, the Matsuda and Ayabe [1] equation is applied to calculate the

peak potential and current over the range of 70" from zero to infinity. Also presented is

an explicit heretofore unrecognized formula for the peak values in the limit of 70" _ 0.

The peak values at the two limiting behaviors are used to deduce and develop an easy-

to-apply empirical relationship which correlates the restdts as a function of 70" over the

entire range. The calculations are confirmed by experimental measurements. The effect

of mistakingly applying the Nicholson and Shain [2] formula for regions of 70" bdow its

range of validity is also quantified.

Peak Current and Potential Calculations

Matsuda and Ayabe [1] solved the one-dimensional transient diffusion equation for

both soluble redox species, and obtained the time-dependent surface concentrations for 0
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and R in terms of the reaction current. Starting the sweep at the equilibrium potential,

O' is related to Eeq by

where E °' is the formal potential. For the case of reversible kinetics, substituting equa-

tion 2, the surface concentrations and the sweep rate, v, into the Nernst equation results

in the integral equation for the current

nF
where t is time, a = ,,/(_-_'_v which

dimensionless current defined as

1- exPC-at)
1 +70" exp(-at) - L(at) (3)

is positive for a cathodic sweep, and x(at) is the

i(at) (4)

where F is Faraday's constant, A is the electrode area, and i(at) is the time-dependent

reaction current which is positive for a cathodic reaction. The product (at) is the dis-

placement of the dimensionless potential from the starting potential.

Equation 3 differs from the analogous formula given by Nicholson and Shaln (equa

tion 22 of [2]) in that by their assumption of C_ is equal to zero, the numerator of L(at)

is equal to one, and 0' is replaced by 0 where 0 is given by

(5)
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Equation 3 is an Abel integral equation [5] for X(at) with the solution

(1 + 1/70")f°, dzv x(at)
J0 zcosh2( )

(6)

The analogous current-potential relationship derived by Nicholson and Shaln (equation

33 of [2]) from the solution of equation 3 with a unity numerator for L(at) and $ replaced

by 0* is

1 + 1 _o°' dz

(For the calculations presented here, the integrals in equations 6 and 7 were numeri-

cally evaluated using the IMSL [6] quadrature subroutine DQDAGS which accommodates

integrands having end-point singularities.)

Although equation 6 as 70" --, oo is identical to the 70 --_ oo limit of equation 7, $"

and O are not interchangeable. The leading term in equation 7 is a result of assuming

the initial concentration of the reduced species is zero, and predicts a CottreU current

upon application of Ei at the start of the sweep. This term can be significant when

"r0 is not large. To illustrate this point, the effect on the voltammogram of erroneously

replacing 0 with 0* in equation 7 is shown in Figure 1 with the potentials plotted relative

RT
to the half-wave potential, E1/2 - E ° + (,F)In7 [2]. At 70" = 20, the dimensionless

peak current and potential predicted from equation 6 both differ from those found using

equation 7 (with 0 set equal to 0") by 2%, and at 70" = 2, the percentage difference is

6% and 33%, respectively.
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Figure 1: Predicted linear-sweep voltammograms from s planar electrode. The solid

Unes axe the voltammograms generated from equation 6. The dashed lines axe voltam-

mogra_.s generated from equation 7 with 0 repla_ed by 0". The potentinls I in mV1 axe

for T = 298 K.
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The dimensionless peak current and potential may be determined as a function of

70* by calculating the voltammogram using equation 6 to locate graphically the peak

position. However, a more convenient analytical procedure was derived by differentiating

equation 8 with respect to (at) and setting the result equal to zero. The potential

which satisfies the resulting expression is the peak potential which, when substituted

into equation 6, specifies the peak current. Newton's method was used to solve the

resulting non-linear equation for the peak potential generated from this procedure. The

same technique was applied to equation 7 (with 0 replaced by 0") and the resulting

dimensionless peak currents and potentials from the two predictions are compared in

Figure 2 as a function of 0,0". The dimensionless peak potential, E_, is defined as

E; = (s)

where (at)v is the dimensionless peak potential relative to the equilibrium potential.

Nicholson and Shain [2] report their results at "70 = 650, and Matsuda and Ayabe

report theirs at 78" = 165,000, and from Figure 2 we see that # and 0" are interchange-

able at these values; that is, no difference is found in the predicted peak values regardless

whether equation 6 or 7 is used. Replacing #* with 0 at smaller values of #*, however, will

lead to differing results. Further, for values of 70" _ 1.60, equation 7 does not predict a

peak current because the Cottrell current dominates the transient response.

The dimensionless peak values (v/-_Xp = 0.4463 and E_ = 1.109) given by Matsuda

and Ayabe [1] and Nicholson and Shain [2] are the limiting values as 70' --+ co. Limiting
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Figure 2: Dimensionless peak currents and potentials for linear-sweep voltammetry on

a planar electrode as a function of "y0*. The solid llnes result from the use of equa-

tion 6, and the dashed lines result from the use of equation 7 with 0 replaced by 0".

For 70" _< 1.60, equation 7 cannot predict peak values. The symbols are the peak val-

ues which were obtained experimentally using the Fe(CN)_4/Fe(CN)ff s redox couple.

D--present results; A--Tomesanyi et al. [4] data.
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valuesfor the dimensionless peak current and potential can also be obtained for 3'0" -'* 0

by taking the limit of equation 6 as 70' approaches zero which, after some mathematical

manipulation, results in

o' exp(-z)
V_x(at)l,,._.0 = _ atx/g/-__ dz (9)

Following the analogous calculus procedure applied to equation 6 to calculate the peak

potential, Newton's method was applied to determine numerically (at)p = 0.855 in the

limit of 70" _ 0. The corresponding dimensionless peak current found from equation 9

is 0.6103.

Empirical Correlations

The following one parameter empirical relationship, motivated by the asymptotic

trends seen in Figure 2, was fit to the theoretically predicted dimensionless peak currents

from equation 6

Lm + 70"J

where x/_Xp(0) and x/_Xp(OO) are the known dimensionless peak currents at the limits

70" _ 0 and 70" _ 0% respectively, and ra is an empirical parameter which was found

by least-squares fit of equation 10 to the data in Figure 2. The resulting correlation is

[ "_0" 1 (111= 0.0103- 0.1641.i.0 ¥ 70.j

The following one parameter empirical relationship, also motivated by the asymp-

totic trends seen in Figure 2, was fit to the theoretically predicted peak potentials from
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equation 6

E;(7O" ) = In {[exp E;(0)] m + [exp E;(oo)] "_}1/" (12)

where E_(0) and E_(co) are the known dimensionless peak potentials at the limits 78" ---*

0 and 70' ---* co, respectively. The parameter m was found by least-squares fit to the

data in Figure 2. The resulting correlation is

[(2.35'_ 1'''

= In L D: / 0.84
+ 3.74 (13)

For 0 < 78" < co, equations 11 and 13 deviate from the exact values by at most 0.1%

and 1%, respectively, differences which are visually indistinguishable in Figure 2. The

maximum 1% error resulting from equation 13 (which occurs in the vicinity of 70" = 3)

translates to less than a 0.5 mV (n = 1 and T = 298 K) error which is experimentally

insignificant.

Experimental Results

Linear-sweep voltammetry was conducted using the ferro/ferricyanide redox couple

in 1.0 M KC1 at five different concentration ratios. The concentration of the ferrlcyanide

was maintained at 0.010 M, and five different ferrocyanide concentrations were used:

0.0010 M, 0.0050 M, 0.010 M, 0.025 M and 0.10 M. Cottrell experiments were run ill

order to determine 7 by taking the ratio of the product of (i.f 1/2) for oxidation-to-

reduction experiments, and 7 = 1.09 was obtained which agrees within 1% of that

calculated using the diffusion coefficients for O and R given by Adams [7]. Therefore,
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the 70" values for the five concentrations ratios are 10.9, 2.18, 1.09, 0.436, and 0.109.

All experiments were performed in a single-compartment cell at room temperature with

a 1.6 mm diameter Pt-disk as the working electrode which was not perfectly flush with

the surface, and Ag/AgC1 as the reference electrode. Voltammograms were generated

at nine different sweep rates ranging from 4 to 150 mV/s and were run in duplicate.

The dimensionless peak current, v/'_Xp, was obtained by plotting the dimensional peak

current, ip, versus the absolute value of the sweep rate to the one-half power, [vl 1/2. The

dip__
slope, dlvp/2 , resulting from linear regression of these data was used to calculate v/-_Xp

since from equation 4

(RT) 1/_ dip

V/'_Xp(70 ') = (nF)a/2C$AT)_o/2 dlvl,/_ (14)

The unknown product A_Dlo/2 was determined by performing a series of linear sweeps

at which only the oxidized species was present ('r#* = oo), and solving equation 14 for

A_Dlo/_ using v_Xp = 0.4463. The product A_Dlo/_ calculated in this manner was then

used in equation 14 at the lower values of 70" to obtain v/_Xp(7#*). The peak potential,

(at)p, which is independent of the sweep rate, was read directly from the voltammogram

for each value of 70', and equation 8 was used to calculate E_. :

The experimental dimensionless peak currents and potentials (open squares) are

compared to the theoretical values in Figure 2. The experimentally determined peak

currents deviate from those theoretically predicted by at most 1%. The measured peak

potentials also closely agree with those predicted, except for 0" = 10 at which a 10
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mV deviation occurs. Also included in Pigure 2 are the experimental data reported by

Tomcsanyi et al. [4] (open triangles) from LSV run on a Pt electrode in 1.0 M KC1

using the ferro/ferricyanide redox couple. The scatter is larger in these data, but the

trend in x/_Xv(TO') is evident. The peak potentials obtained by Tomcsanyi et al. [4]

were reported only to the nearest 10 mV and are 30 to 40 mV higher than the theory

predicts.
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Abstract

A pore in a porous matrix is modeled as a cylindrical electrode and the mass and

charge conservation equations are solved in the context of this geometry for the simple

redox reaction O % me- _ R when the potential at the pore aperture is ramped linearly

in time. The resulting linear-sweep voltammograms depend on the combined effect of

kinetic, ohmic and mass-transfer resistances_ and determining the transfer coe_cient_

the standard rate constant or the number of electrons transferred is accomplished by

correlating the peak currents and potentials to the governing system parameters. The

correlations are established by introducing simplifications at various parameter limits.

The first simplification is to neglect axial diffusion which allows the diffusion equation to

be analytically solved giving the surface concentration of the redox species in terms of

the reaction current and the solution potential at the electrode surface. In the absence

of solution resistance_ correlations are established in the limit of reversible (Nernstlan)

and irreversible kinetics which relate the peak currents and potentials to the sweep rate

by making use of the known peak values obtained from a planar electrode and a thin-

layer cell as the high and low sweep-rate asymptotes_ respectively. To quantify ohmic

effects in the absence of axial diffusion, an analytical solution to the Laplace equation

for the potential is coupled to the analytical solution to the diffusion equation. The

peak currents and potentials obtained when axial diffusion is negligible are compared to

those obtained when the two-dimensional conservation equations are solved numerically

in order to determine under what conditions axial diffusion affects the voltammogram.
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1 Introduction

Electroanalytic techniques used to study the kinetics on planar electrodes do not always

lend themselves to studying flooded porous electrodes. For example, hydrodynamic

methods (e.g. rotating-disk electrodes [1]) are not useful since the reaction surface is

inside the porous matrix, and therefore controlling forced convection only affects the

material transport to the pore mouth but not within the matrix. In contrast, linear-

sweep voltammetry (LSV) in which the electrolyte is stagnant can be used to perform

in _itu kinetic studies on flooded porous electrodes. However, the presently available

mathematical methodology that has been developed to determine kinetic parameters

using LSV on a planar electrode [2,3,4,5] and in a thin-layer cell [6,7,8] is not applicable

for a pore except at limiting sweep rates. At high sweep rates the diffusion layer is

small relative to the pore diameter and the voltammogram has the characteristics of

LSV on a planar electrode when ohmic resistance is negligible. For deep pores and low

sweep rates, radial and axial concentration gradients are small for the major fraction of

the pore volume and consequently the pore behaves like a thln-layer cell However, at

moderate sweep rates in the presences of ohmic resistance and axial dit_sion, LSV can

not be characterized by these two limiting cases, and the result of LSV depends on the

combined effects of ohmic, mass-transfer and kinetic resistances.

This paper considers two-dlmensional mass and charge transport in a tube-analog
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model of a pore in a porous matrix for the reaction

0 + he- ,,_ 2 (1)

where O and R are soluble oxidized and reduced species, respectively, and _ is the

number of electrons transferred. If the rate of charge transfer is governed by the Butler-

Volmer kinetic expression, the peak current and potential is shown to be a function of six

dimensionless parameters. Solving the coupled material and charge conservation partial

differential equations numerically is computer intensive (on the order of an hour of CPU

per simulation on an IBM/3090), and so carrying out the simulations to correlate the

peak currents and potentials to the governing system parameters would be formidable.

Therefore, the approach taken in this study is to conduct a parametric evaluation of the

two-dimensional model by introducing simplifications at various parameter limits, and

use a finlte-element numerical solution to bridge the gap between the limiting cases.

The first simplification is to neglect axial diffusion which allows the diffusion equa-

tion to be analytically solved giving the surface concentration of the redox species in

terms of the reaction current and the solution potential at the electrode surface. Fur-

ther assuming solution resistance is negligible reduces the computation time over three

orders-of-magnitude from the finite-element solution procedure which facilitates corre-

lating the peak currents and potentials to the governing system parameters. In the limit

of reversible (Nernstlan) and irreversible kinetics, correlations are established which re-

late the peak currents and potential to the sweep rate by making use of the peak values
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obtained from a planar electrode [2,5] and a thin-layer cell [6,7]. Analogous correlations

were obtained by Aokl et al. [9] for LSV in a rectangular cell for reversible kinetics and

negligible ohmic resistance, and later confirmed experimentally [10].

The correlations presented here, which assume solution resistance is negligible, are

shown to be useful also when solution resistance is appreciable by a priori accounting

for ohmic effects. The effect of solution resistance on the voltammogram is quantified

by coupling the analytical solution to the one-dlmenslonal, transient diffusion equation

to the analytical expression for the solution potential at the electrode surface obtained

by solving the two-dimenslonal Laplace equation [11,12]. In parameter regions in which

numerical difficulties prevent voltammograms from being generated from these coupled

non-linear equations, the finite-element numerical solution is used.

These correlations can be used to determine whether the electron transfer is re-

versible or irreversible; if the kinetics are reversible, the correlations may be used to

estimate the number of electrons being transferred, or if the kinetics are irreversible, the

transfer coefficient and the standard rate constant may be extract from LSV measure-

ments. The results are not valid if material axially diffusing through the pore mouth

contributes appreciably to the current. The influence of axial diffusion will depend on

the sweep rate for a given pore length since the slower the sweep, the larger is the frac-

tion of the pore volume that will be effected by axial diffusion. Again, the finlte-element

numerical solution is used to determine the parameter regions in which the correlations
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are not valid due to axial diffusion.

2 Mathematical Model

2.1 Assumptions

For the purpose of model development, a porous electrode is assumed to be a collection

of identical, non-interconnected cylindrical pores that are filled with electrolyte. Since

all pores are equivalent in this idealized electrode, the behavior of the complete electrode

will be the same as that predicted for a single pore. Alternatively, it is possible to predict

the performance for several different pore sizes and then combine the results based on a

given pore-size distribution, as suggested by Winsel [11] and de Levie [13].

A cylindrical tube of diameter d extends from z = 0 to a distance L within the

electrode. At the pore aperture (z = 0), the tube is exposed to the bulk solution

containing both oxidized species 0 and reduced species R. The potential at the inlet of

the tube is potentiostatically controlled. The inner wall of the tube is electroactive and

the closed end (z = L) is inactive. Other assumptions are:

1. The solid phase is isopotential.

2. The reaction is a simple redox process between soluble reacting species.

3. No other processes limit or alter the rates of mass transfer and charge transfer (i.e.

no adsorption or desorption and no preceding or following reactions).

4. The electrolyte is well supported so that the solution-phase potential is governed

by the Laplace equation.
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5. Diffusion is the dominant mass-transfermechanism.

6. The diffusion coefficients for the two reacting species are equal CDo = _D2 = _D).

7. Non-faradalc current is negligible.

8. There is no uncompensated ohmic resistance from the reference electrode to the

pore aperture.

9. The electrolyte in the reservoir is stagnant and the axial concentration gradient of

the reacting species at the pore opening is proportional to the difference between

the bulk and inlet concentrations.

10. The potential is radially uniform at the pore aperture.

Assumptions 1-5 are common to most models of porous electrodes, although some,

such as that of Grens and Tobias [14,15], include the effects of migration and variable

conductivity. Grens [16] addresses the importance of these and other assumptions for the

prediction of steady-state current density with a one-dimensional model. For the system

to be considered here (i.e. a simple redox reaction in a well-supported electrolyte) it is

reasonable to neglect these effects.

The assumption of equal diffusivities (assumption 6) eliminates the diffusion equa-

tion for one of the redox species. In a previous study [5] we included the effect of differing

diffusion coefficients in the calculations for reversible LSV on a planar electrode, and

found for a cathodic sweep when the diffusion coefficient of the oxidized species was 50_

higher than that of the reduced species (a significant variation) the peak current was

less than 2% greater and the peak potential 5/n mV (T = 298 K) more negative than

if the diffusion coefficients were equal. If the kinetics are irreversible, the concentration
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distribution of only the reactant species is important and assumption 6 has no effect

on the voltammogram. Neg]ectlng uncompensated resistance (assumption 7) limits the

usefulness of the results if the potential drop between the reference electrode and the

pore aperture is appreciable since the sweep rate at the pore opening would no longer

be linear. However, uncompensated resistance may be negiiglble even when ohmic losses

inside the pore are appreciable if the cross-sectional area available for current flow is

larger outside the pore then inside, and the distance from the reference electrode to the

pore mouth is small. Neglecting double-layer charging (assumption 8) places a lower

limit on the reactant concentration since only the reaction current decreases with a de-

creasing concentration, and an upper limit on the sweep rate since the charging current

is a stronger function of the sweep rate than is the reaction current.

Assumption 9 is an attempt to account for mass-transfer resistance in the bulk

electrolyte by conceptualizing the pore aperture as an electroactive disk embedded on

an insulating plane. Bond e_ al. [17] calculated the steady-state current to such a

disk when the reactant surface concentration was uniform, and using Farady's law they

related the concentration gradient at the surface to the difference between the bulk and

surface concentrations. Assumption 10 is invoked for mathematically convenience; in

reality the potential at the tube inlet is radially dependent. A rigorous treatment which

would eliminate the last two assumptions would require the simultaneous solution of the

governing equations inside and outside the tube m a fairly intractable problem.
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2.2 Governing Equations

The concentration of the oxidized spedes is governed by the time-dependent, two-

dimensional diffusion equation

= _D ,'-_-c-_ +--z- I" (2)

where Co is the oxidized species concentration, _D is the diffusion coefficient, t is the

time, and r and z axe the radlul and axial coordinates, respectively.

The concentration of the reacting species is initially uniform throughout the pore

and equal to that in the reservoir (equation 2a). The material flux at the pore inlet is

proportional to the difference between the bulk and inlet concentration (equation 2b)

with the proportionality constant obtained by modeling the pore aperture as an electro-

active disk on an insulating plane [17]. The concentration gradients at the back of the

pore (equation 2c) and along the centerline (equation 2d) axe zero, and the gradient at

the pore wall is proportional to the reaction current (equation 2e). These constraints

can be expressed mathematically as

2a) t=0; co=c 

OCo
2b) z=O; OCoo_.._-'= (-8/a'd) (C_ - Co) 2d) r = O; Or = 0

OCo OCo -i,,

2c) z = L; O--"z-= 0 2e) r = (d/2); Z_o--_-- = .-T

where the superscript o indicates the spatially uniform initial concentration, F is Faxa.

day's constant, and in is the local reaction current density at the electrode surface which
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is positivefor a cathodic reaction. For reactions in which the kineticsare governed by

the Butler-Volmer rate equation, i,_isgiven by

F
where _° is the standard rate constant, / = _H_, a is the cathodic transfer coef_cient,

Ew and E °' are the solution potential at the tube wall and the formal potential of the

redox couple, respectively, and CR is the reduced species concentration.

Due to the assumption of equal diffusivities, the concentration of the oxidized and

reduced species are related by

c_ + c_ = Co(z,r,O+ cR(z,r,0 (4)

The Laplace equation governs the solution potential

o = _/+;_ _ (5)

The potentialat the pore opening startsat the equilibrium potential,Eq, and changes

linearly with time as set by the sweep rate, v - -_ (equation 5a), the potential

gradients at the closed end of the pore (equation 5b) and the centerline (equation 5c)

are zero, and the gradient at the electrode surface is proportional to the reaction current

(equation 5d). These boundary conditions can be expressed mathematically as

0E

5a) z = 0; (E - E_) = -v_ 5c) , = 0; -_- = 0
aE aE

5b)•= L; _ = 0 5d) ,. = a/2; ,_-_ = i.
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where _ is the conductivity of the electrolyte.

Equation 2 is rewritten in a dimensionless form as

oct,)ac5 a_c5 _ a y._ff= ax---_+_ o-7 (8)

0a) ¢=0; C5=1

OC_, OC_
6b) X-0; OX = (-4/_r)(1-C_) 6d) r=o; O_

OC5
6c) X=7; OX =0 6e) Y=I; OCSoy

where the dimensionless parameters axe defined in Table 1, and I* is the dimensionless

local reaction current density at the electrode surface

r - i. (7)
nFC6(nfv1))l/2

The dimensionless form of equation 5 is

[ OE*\

o [r-if) (s)o = ox_+Va-V

aE*

Sa) x = o; E" = h_- _¢ 8c) r = o; 0--V= o
OE* #E*

8b) X=7; a--_=o 8d) Y=I; O----_-=(J/A)I*

The dimensionless Butler-Volmer equation is

(9)
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parameter

J

7

A

ff

Interpretation

ohmic resistance
kinetic resistance 2_

cathodic transfer coemcient

2_L
d

mass-trans.f.er resistance k°

kinetic resistance (n freD)l�2

initial concentration ratio C_/C_

diffusion time d2n f V
sweep time 49

Table 1: The definitions of the dimensionless parameters that govern LSV in a cylindrical

electrode and their physical interpretation.
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SinceLSV in a cylindrical electrodedependsupon all six parameters listed in Ta-

ble 1, and each finite-element numerical simulation takes on the order of an hour of CPU

time on an IBM/3090, it is desirable to make some simplifications to the above model,

as discussed below.

2.3 Negligible Axial Diffusion: With and Without Appreciable
Solution Resistance

The first simplification is to neglect axial diffusion. This has practical significance if the

duration of a single linear sweep is short since radial diffusion will predominate for the

major fraction of the pore volume. Equation 6 reduces to

OC__.._ 1 0 y (10)
Or = _ O"-Y" aY ]

lOa) 7"--0; C_=I

oc5 oo5
lOb) Y = O; OY = 0 lOc) Y = 1; OY

-- = -4;r

Taking the Laplace transform of equation 10 with respect to r, solving the resulting

ordinary differential equation for the transformed concentration, relating the gradient

of the transformed concentration at the electrode surface to the transformed reaction

current, and finally applying the convolution property of Laplace transforms to invert

back to the time domain results in

C_(1,r) = 1 - 2V_fo" [1 - ]+ _ e-;_I, ('-'9 l*('r')dr' (11)
rl._.l
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where _-i are the zeros of the first-order Bessel function JI(_,I) = 0. Equation Ii is

valid regardless of the reaction rate equation since it relates the concentration of O at

the electrode surface to an, as yet, unspecified reaction current.

2.3.1 Reversible Kinetics

For a reversible electrochemical reaction, the surface concentrations of O and R are

coupled through the Nernst equation to the solution potential by

Co(d/2,t)

CRCd/2,t) = [,VCE.- E")] (12)

where E °' is the formal potential. Writing equation 12 in dimensionless form and utilizing

equation 4 gives

(1+ _)_E- (is)
c$(1,r) = _[1+e E¢]

where E_ is an arbitrary function of time. Substituting equation 11 into equation 13,

and solving for the integral expression results in a Volterra integral equation of the first

kind

1 + e-_'_, ('-_'') I_,,('r')dr'= 2_[1 + e_,] = g(E*)
(14)

where the subscript rev denotes reversible kinetics.

The dimensionless current, I*n(r), can be determined numerically [2] by approxi-

mating the integral in equation 14 as

_ ] q-11 + _ e-_1 ('-'') I:n(v')dr' _-, _ B_I_.,.,,(qh - ph) (15)
n=l /z=0

t#u /:- "



where h is the width of each interval such that r = qh and r' = #h. The coefficients B_,

are determined by approximating the unknown function I*n(r t) by linear expressions

in the individual intervals, integrating the left side of equation 15, and solving for the

coefficients. For # = 0 this procedure results in

and for # from 1 to q - 1

Bo = 2-n=1 _h
(16)

O0

Substituting equation 15 into equation 14, and solving for I(qh) gives

q-1

I:.,,(qh) = "=' (18)
Bo

If it is further assumed that the solution resistance is negligible, then the potential

at the tube wall is equal to the potential applied at the pore opening (E: = In _ - <rr),

and the peak current and potential is obtained by stepping equation 18 through time

until a maximum in the current is obtained. The voltammograms generated by the

numerical solution of equation 18 depend only upon a and _.

In order to assess the accuracy of the integral approximation given in equation 15,

an alternative solution to equation 10 was generated by solving the equation for a unit

step change in the potential at the tube wall and using Duhamel's superposition principle

[18] to account for the tlme-dependent boundary condition given by equation 13. The
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resulting current-potential expression is

[,?_,("r) = 2(1 + ,_)V_ _ Jo'" exp [-[o'T' + )i_.('r- "r')]] dr'
_ [1+ _ exp(-_,')]'

where _no are the zeros of the zeroth-order Bessel function Jo(,X.o)= O.

(19)

In the presence of appreciable solution resistance, the two-dimensional Laplace equa-

tion for the potential (equation 8) must be solved to obtain E*. Winse] [11] and Viner

and Fedkiw [12] solved equation 8 to determine E* as a function of axial position for an

arbitrary time-dependent potential variation at the pore opening. For a linearly varying

potential at the pore mouth, the result is

2J_ Io(/_,.,)sin_,_X[I*(X',r)sin/3.X'dX' (20).E:(X,'r) -- -o"r + A'),_ ]_,Ii(/_,,)

whereIo(_,)andI_(_,,)are-.ero-and£rst-ordermodifiedBesselfunctions,respectivdy,

and/_n -- (n - ½)1r/7. Equation 20 is valid regardless of the reaction rate equation.

2.3.2 Irreversible Kinetics

When the kinetics are irreversible, the back reaction may be ignored and for a cathodic

reaction the Butler-Volmer kinetic expression given in equation 9 reduces to

I_,,. = AO_e -'E" (21)
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where the subscript irrev indicates irreversible kinetics. Substituting equations 11 and 15

into equation 21 and solving for the current results in

[ .1 ]A I- 2V_Z B,1_..._(q- #h)
,=I (22)

I_',.,.,,(qh) = e,.E_, + 2v_AB0

where B0 and B t, are given in equations 16 and 17, respectively. Equations 20 and 22

are coupled when solution resistance is appreciable.

3 Results and Discussion

Correlations which relate the peak currents and potentials obtained from LSV in a

tubular electrode to the governing dimensionless parameters are obtained for reversible

(Nernstian) and irreversible kinetics by assuming solution resistance and axial diffusion

are negligible (equations 18 or 22). Solution resistance is then accounted for by coupling

the analytical solution to the one-dimensional diffusion equation to the analytical ex-

pression for the solution potential at the electrode surface (equation 20). In parameter

regions in which numerical difficulties prevent these coupled non-linear equations from

being evaluated, a finite-element numerical solution is used to solve equations 6 and 8.

The parameter regions in which axial diffusion may be ignored is determined by com-

paring the peak currents obtained with and without the axial component of the diffusion

equation included in the model.
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3.1 Negligible Axial Diffusion

3.1.1 Negligible Solution Reslstance

Reversible kinetics

In the absence of solution resistance, equation 18 was applied by letting E_ -

(In _ - _rT) for 51 different values of cr ranging from 10 -1 to 104 at 30 different values

of _ ranging from 10 -s to 10 s. Richardson extrapolation [20] was used to speed the

convergence of the infinite series for the B_, coefficients (equations 16 and 17), and all

other non-oscillatlng series given in this paper. Figure 1 shows the dimensionless peak

currents and potentials as a function of V_ for three different values of _. Only some of

the calculations up to v/_ = 20 are shown in Figure 1 in order not to clutter the figures

and to emphasize the behavior at large and small _r. As _r --* oo, the diffusion layer is

small relative to the pore diameter and the peak values approach those obtained from a

planar electrode (i.e. the peak current is proportional to v 1/_ and the peak potential is

sweep rate independent). Weidner and Fedkiw [5] developed empirical correlations for

the peak current and potential as a function of _ for LSV on a planar electrode and these

are listed in Table 2. The peak current obtained from LSV on a planar electrode is

within 5_ of the peak current obtained from that on a cylindrical electrode for cr > 300,

and the peak potentials are within 5In mV of each other for _ > 40.

As the sweep rate approaches zero (_r --, 0), the radial concentration gradients
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Figure 1: Dimensionless peak currents and potentials for linear-sweep voltammetry in

a cylindrical electrode when the kinetics are reversible, and ohmic losses and the axial

diffusion flux are negligible. The symbols result from the use of equation 18 and the solid

lines are the correlations which were fit to the calculations (equations 24 and 26). The

dashed lines as a ---, oo axe the dimensionless peak currents and potentials obtained from

LSV on a planar electrode [5], and those as a _ 0 are the equations for the dimensionless

peak currents and potentials in a thin-layer cell [6] (see Table 2). The potential, in mV,

is for T - 298 K.
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Peak Current or Potential Expression Reference a" Limit

{_>1;

I_,,_(thin-layer) =

__<1;

_>1; 0

(1+ ,_)v";
8_

v';
2(1 + _¢)

/_,,,_(planar) = 0.6103 - 0.164 (1.0_+ {.)

• 1.19 . 0.84

E;.,,,(planar) = In + 3.74

[8]

[6]

[5]

a<exp 3.91 0.5 + -2.81

0-<0.5

a > 3oo

[5] ¢r>40

Table 2: Expressions for the peak current and potential on a planar electrode and in a

thin-layer cell for reversible kinetics. The _ limit indicates the value at which the peak

currents are within 5% and the peak potentials within 5In mV (T = 298 K) of the values

calculated from LSV in a cylindrical pore if solution resistance and axial diffusion are

negligible.
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approach zero and the voltammograms have the characteristics of LSV in a thin-layer

cell. Hubbard and Anson [6] derived a current-potential relationship for LSV in a thin-

layer cell when only the Oxidized species is initially present (_ = co) and the voltage is

swept in the negative direction. They found that the cathodic current is proportional to

the sweep rate and given by

I,_(thin-layer) = n2/FvVC_eE"
A [I 4- e_'] 2 (23)

where V is the volume of the thin-layer cell. When the initial concentration of the reduced

species is not negllgibly smal_,l_,,equation 23 remains valid except that C_ is replaced by

(C_ + C_). When C_ > C_ (_ > 1), the peak is obtained by differentiating equation 23

with respect to time and setting the resulting equation equal to zero. The potential

which satisfies the resulting equation is the formal potential (E_ - 0) which, when

substituted into equation 23, gives the peak current. However, when C_ <: C_ (_ < I)

the starting potential is negative with respect to the formal potential and therefore the

peak current occurs at the start of the sweep (E_ -- In _) and the current decays as the

oxidized species is reduced. We see from Figure i that the dimensional peak current

is proportional to the sweep rate at low Gr and the peak potential approaches zero as

predicted from equation 23. The dimensionless peak values in the limit of o" --+ 0 are

listed in Table 2. The upper limit of _r for which the the thin-layer-cell approximation

is valid is a strong function of _. For _ _> 5, the peak current obtained from equation 18

is within 5% of l_.,_(tl_n-layer) given in Table 2 when _r <: 2, but for _ _< O.i, cr has to
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be less than 0.1 for the two currents to be within 5% of each other. A one-parameter

least-squares fit was performed for the upper cr limit as a function of _, and the result is

shown in Table 2

The following empirical relationship, motivated by the asymptotic trends seen in

Figure 1, was fit to the dimensionless peak currents calculated from equation 18

]_,,_(_r)- [l_,,_,(thln-layer)"_-{-l_,,.(planar)"_]I/'_ (241

where m is an empirical parameter which was found by least-squares fit of equation 24

to the dimensionless peak currents for 51 different values of _r. The parameter m was

obtained at 30 different values of _, and a two-parameter empirical equation for m was

generated as a function of _ and is listed in row 1 of Table 3.

Substituting l_,,,v(thin-layer)for _ _> 1 and l_,,.(planar) into equation 24 along

with the definitionsfor I* and crgives

"_' m _ .Trn_fFd2LC$( 116_+ _)' u'_/'+ [1.57(nF)'d_LC;l;,,._,,(planar)]" (25)

where _j,isthe peak current which would be measured ifsolutionresistancewas negligible.

, ,n vm/2 straight line if the kinetics areTherefore, plotting (sp//v_) versus should yield a

reversible, and the slope and intercept may be used to estimate n. Table 3 lists the

proper way to plot LSV data in order to yield a straight line, along with the equations

for the resulting slope and intercept.

The following empirical relationship, also motivated by the asymptotic trends seen
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in Figure 1, was fit to the theoretically predicted peak potentials from equation 18

[°1E;,,_(_r) = [E_.,_(planar)- E;.,_(thin-layer)] _ + E;.,_(thin-layer) (261

The two-parameter empirical equation for m as a function of _ is listed in row 2 of

Table 3.

Only one parameter (m) was used to fit the peak current and potential calculations

in order to facilitate a graphical analysis of experimental data. The disadwntage to

a one-parameter fit is that equation 24 is only accurate to within 5% and equation 26

to within 5/n mV (T = 298K). Although this error may be significant, peak values

estimated from equations for LSV on a planar electrode or in a thin-layer cell result in

even larger errors if the value of _r is outside the range listed in Table 2. Therefore, these

correlations provide more accurate estimates of the peak values at moderate sweep rates

than is possible with planar or thin-layer theory alone.

The error in the simulated voltammogram arising from the integral approxima-

tion given in equation 15 was assessed by comparing the peak currents obtained from

equation 18 to those obtained from equation 19 which was derived using Duhamel's su-

perposition principle. Although the peak current for equation 19 may be obtained by

generating an entire voltammogram, a more convenient analytical procedure was derived

by differentiating equation 19 with respect to _" and setting the result equal to zero. The

potential which satisfies the resulting expression is the peak potential which, when sub-

stituted into equation 19, specifies the peak current. Newton's method was used to solve
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the resulting non-llnear equation for the peak potential generated from this procedure.

At _ = 1000, the peak currents for _r varying from 10 -1 to 104 calculated from the two

current-potential relationships agreed to within 0.1_ of each other, verifying the integral

approximation.

Irreversible kinetics

In the absence of solution resistance, equation 18 was appUed by letting E,_ =

(In _ - _rr) for 51 different values of cr ranging from 10 -1 to 104 at 9 different values of

a ranging from 0.1 to 0.9. As stated by Matsuda and Ayabe [3] and reai_rmed in our

calculations, the kinetics can be assumed irreversible if A _< 10 -s and was the value used

in the calculations. Figure 2 shows the dimensionless peak currents and potentials as

a function of v/_ for three different values of a. As with reversible kinetics the peak

values approach those obtained from a planar electrode as _r _ oo [4] and approach

the thln-layer peak values as _r --, 0 [7]. Table 4 lists the peak current and potential

expressions for LSV on a planar electrode and in a thln-layer cell which are used in the

correlations.

The following empirical relationship, which is analogous to that used when the

kinetics were reversible, was fit to the theoretically predicted dimensionless peak currents

obtained from equation 22

I_j,,.u(cr) = [I_j,,.(thin-layer)m "1-]'_,,_.T.(planar)*] '/m (27)
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Figure 2: Dimensionless peak currents and potentials for linear-sweep voltammetry in

a cylindrical electrode when the kinetics are irreversible and ohmic resistance and axial

diffusion are negllgib]e. The symbols result from the use of equation 22 and the solid lines

are the correlations which were fit to the calculations (equations 27 and 28). The dashed

lines as cr _ oo are the dimensionless peak currents and potentials obtained from LSV

on a p]anar electrode [4], ancl those as _r _ 0 are the equations for the dimensionless

peak current in a thin-layer cell [7] (see Table 4). The potential ordinate approaches

(-In _r) as _r ---, 0. The potential, in mV, is for T = 298 K.
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Peak Current and Potential Expression Reference _r Limit

l_._,,_(tl_n-layer) = 0.1896a_ [7] cr < 3

E_,_,,,v(tmn.layer ) = la iIn A -In

I_._,,_(planar) = 0.4958V_

1 In A _ 0.780 i
E;,,,,_(planar) =

[7]

[2]

[2]

_<12

a > 2000

a > 400

Table 4: Expressions for the peak current and potential on a planar electrode and in

a thin-layer cell for irreversible kinetics. The _r limit indicates the value at which the

peak currents are within 5% and the peak potentials within 5/n mV (T - 298 K) of the

values calculated from LSV in a cylindrical pore if solution resistance and axial diffusion

are negligible.
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were m is an empirical parameter which was found by least-squares fit of equation 27 to

the dimensionless peak currents for 51 different values of _r. The fit was performed at

nine different values of a, and all the m values were within 1% of each other. Taking m

as a constant, a can be estimated from the slope of a (_p/v_) " versus Vm/_ plot. The

slope and intercept of the straight line and the average value for the parameter m are

listed in row 3 of Table 3.

The following empirical relationship, motivated by the asymptotic trends seen in

Figure 2, was fit to the theoretically predicted dimensionless peak potentials obtained

from equation 22

expaE;,i,,ev(_r) : [(expaE;jrrev(thin-layer))r_ q- (expaE;,i,,er(planar))m] 1/m (28)

where m is an empirical parameter which was found by least-squares fit of the above

equation to the peak potentials. The nine m values, corresponding to the different a

values, were within 5% of each other with the average value listed in row 4 of Table 3.

Equation 28 may be simplified and the peak potentials written in the form which is

plotted in Figure 2 giving

[ (2),.0.]- ; 0.488 0.202+

After a is determined from the experimental peak-current data, the peak potentials can

be used to estimate the standard rate constant, h°, by plotting the data as indicated in

row 4 of Table 3 and evaluating the slope and intercept.
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3.1.2 Appreciable Solution Resistance

Reversible kinetics

Since the current and the potential are position dependent when solution resistance

is appreciable, and the solution potential at the tube wall (equation 20) is a function of

the total current, equations 18 and 20 are coupled and must be solved slmultaneous]y.

The total current as a function of applied potential at each time step was obtained

by dividing the pore into N segments of equal length and calculating the current in

each segment using equation 18 with the total current being the sum of the individual

segment currents. The N current and N potential equations were simultaneously solved

using the IMSL [19] non-llnear equation-solver subroutine DNEQNJ which makes use of

a user-supplied Jacobian. The Fflon algorithm [21] was used to perform the integration

in equation 20, and a binomial averaging algorithm [22] was used to extrapolate the

infinite series. Unfortunately, numerical dii_cultles prevented the non-linear equation

solver from converging in a parameter region were solution resistance was appreciable.

Increasing the number of divisions in the pore may have allowed the non-linear equation

solver to converge, but at N - 20 the amount of computer time per simulation was

on the order of that needed to solve numerically the two coupled partial differential

equations, and so the following procedure was used to account for solution resistance

when the kinetics are reversible.
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Equations 6 and 8 were simultaneouslysolved using the IMSL [19] finite-element

procedure PDE/PROTRAN, and the Butler-Volmer kinetic expression (equation 9) was

numerically integrated along the tube wall using the IMSL [19] subroutine DQDAGS at

each time step. The Butler-Volmer equation is valid for reversible kinetics as long as

A is large. Matsuda and Ayabe found that the kinetics could be assumed reversible if

A __ 15, and so a value of A = 50 was used in the calculations to insure reversibility. It

was observed that for Gr= 1 and _ = 100 the peak currents and potentials depend ouly

upon the grouping (J/A)72 = ® as long as 7 was greater than 100. The lower bound

on 7 is due to appreciable axial diffusion of material into the pore through the pore

aperture. The effect of axial diffusion on the voltammogram will be addressed further

in the next section.

The peak currents, normalized by the peak currents which would be obtained if

solution resistance was negligible, are plotted in Figure 3 as a function of G. From

Figure 3 we see that at 0 = 1 solution resistance diminishes the peak current by less

than 1%, but at ® -- 10 the peak current has been reduce by 13% due to ohmic effects,

and by 24% at ® -- 20.

In order to assess the numerical accuracy of the finlte-element numerical solution,

an alternative current calculation was performed by numerically integrating the current

in the electrolyte, i0, at the inlet to the tube using Obm's law (i, - _:VE). The potential

gradient was estimated by using a three-point-derivative formula. The two independent
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Figure 3: The normalized peak current in a cyUndrical electrode when the kinetics

are reversible as a function of the dimensioniess grouping (J/A)7 2 - O. The peak

current, ip, is normalized with respect to the peak current which would be obtained if

solution resistance was negligible, _p. The symbols are the results from the finlte-element

numerical solution, and the solid line is the correlation which was established _or a

thin-layer eel] [24] when o" = 1.
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current calculations agreed to within 2_ of each other for the results given in Figure 3,

but for O > 20 the the discrepancy between the currents was larger than 2%.

As shown in Section 3.1.1, the voltammogram will have characteristics of LSV in a

thin-layer cell when <r < 3 in the absence of solution resistance. Hinman et a/. [23] used

a network model to simulate LSV in a thin-layer cell to account for ohmic distortion

when the kinetics axe reversible. Three assumptions, in addition to the ones made in

obtaining the results shown in Figure 3, were made in their analysis: (1) the potential

is radially uniform, (2) only the oxidized species is present initially (_ = co), and (3)

the rate at which the potential changes with time is uniform throughout the cell as set

by the sweep rate. Using the same set of assumptions we applied a continuum model to

the thin-layer eel] [24], and found that the normalized peak current was a function of a

single variable which in the present nomenclature is Ov/_. The resulting correlation is

plotted in Figure 3 for cr - 1.

Both models predict a precipitous drop in the peak current as O is increased past

one, but the drop is steeper in the present calculations. For example, at e = 10 the peak

current calculated from the thin-layer model [24] is 9% higher than that calculated by

numerically solving the two coupled partial differential equations (equations 6 and 8).

The assumption of a radially-uniform potential should be valid at _r - 1 since the thin-

layer approximation holds for _ < 3 (see Tables 2) and a small concentration gradient

leads to a small potential gradient. The difference in the normalized peak currents
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resulting from a non-zeroinitial concentration of the reduced species should be negligible

since the difference between the peak current for _ - I00 and _ - oo in a thln-layer ceil

when solution resistance is negligible is only about 1%. The difference in the peak

currents predicted from the two models is therefore expected to result from assuming

the sweep rate is uniform throughout the pore. As indicated by equation 23, the local

current is not only a function of the axial dependent potential, but it is also directly

proportional to the local rate of change of the potential, dlEl/dt. Since dlEl/dt decreases

with distance into the pore, setting dlEl/d_ equal to the sweep rate, v, overestimates the

current.

Yet to be determined is the functional dependence of the normalized peak current

on _, and O. From our previous study [24] we expect the normalized peak currents to

only be a function of the grouping Ox/F when the thin-layer approximation holds. The

shift in the peak potential due to ohmic effects also needs to be quantified. The effect of

on the peak current in the presence of solution resistance has not been explored either,

but the effect on the normalized peak current is expected to be small.

Irreversible kinetics

The effect of solution resistance on the voltammogram when the kinetics are irre-

versible and axial diffusion is negligible was determined by simultaneously solving equa-

tions 20 and 22 with the pore divided into 10 segments. This value for N was used since

no noticeable effect on the peak current was observed for larger N, and the computer

115



time per simulation scaled as N 2. The normalized peak currents were found to depend

only upon O for ¢r __ 20, and OV/_ for _r __ 2. Figures 4 and 5 show the normalized peak

currents obtained for ¢r _ 20 and _ < 2, respectively. For 0r __ 20, numerical dli_cultles

prevented the non-linear equation solver from converging for O > 10, and so in this O

range equations 6 and 8 had to be solved using the finlte-dement numerical so]utlon.

Comparisons between the two solution procedures were made at O _ 10 for ¢r = 100

and the resulting peak currents were within 0.2_ of each other as long as "f __ 10, a

difference which would be visual]y indistinguishable in Figure 4. All the calculations

shown in Figure 5 were obtained from the finite-element solution.

A totally empirical, three parameter least-squares-fit of the results in Figure 4 pro-

duced the following correlation for the normalized peak current as a function O for

(ipl_,),,,_, = [(1.372- 0.43810gO) -7'5° + 1] -°'1as3 (30)

Five different values of _r between 20 and 500 were used in the correlation in which

O ranged from 10 -2 to 102. A three parameter least-squares-fit was also made of the

calculations in Figure 5 which resulted in the the following correlation for the normalized

peak current as a function OV/_ for _r _< 2.

-- - 1](ip/_p)_,,_ [(1.606 0.497 log Ox/_)-"_ + (31)

In establishing this correlation, _r ranged from 0.2 to 2, and ® from 10 to 100.

The simulations which established equations 30 and 31 were run with ¢_ = 0.5. It is
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Figure 4: The normalized peak current in a cylindrical electrode as a function O for

cr >__20 when the kinetics are irreversible and axial diffusion is negligible. The peak

current, iv, is normalized with respect to the peak current which would be obtained if

solution resistance was negligible, _p. The circles (o) are the results from simultaneously

solving equations 20 and 22, and the diamonds (@) are the results from the finite-element

solution. The solid llne is the correlation which was fit to the calculations (equation 30).
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Figure 5: The normalized peak current in a cylindrical electrode as a function ovr_

for _r < 2 when the kinetics are irreversible and axis] diffusion is negligible. The peak

current, i_, is normalized with respect to the peak current which would be obtained if so-

]ution resistance was negligible, _p. The symbols are the results from the finite-element

solution, and the solid line is the correlation which was fit to the calculations (equa-

tion 31).
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not expect that normalized peak currents will be a strong function of a (if at all), but

that remains to be determined. Analogous correlations to those for the normalized peak

currents as a function of 6) still need to be established for the shift in the peak potential

due to solution resistance. Also, more simulations are required in order to quantify the

ohmic effects in the _ region between 2 and 20.

In order to check the accuracy of the finlte-element calculations, the currents ob-

tained from the integration of the Butler-Volmer kinetic expression were compared to

those resulting from radlal]y-integrating Ohm's law at the pore aperture, and for _ __ 20

and ® < 100 an agreement within 1% was obtained. No calculations were performed

at larger values of $ since at ® = 100 the voltammogram is severly distorted with the

peak spread over tens of mV, and so simulating LSV beyond this point would be of no

practical use.

3.2 Effect of Axial Diffusion

The above correlations will not hold if appreciable material diffuses into the pore from

the reservoir which will occur if cr is too small for a given % In order to determine the

lower bound of _r as a function of 7 above which axial diffusion can be neglected, the

finite-element technique was used to solve equation 6 with the potential at the pore wall

set by the sweep rate. For the case of reversible kinetics, the Nernst equation was used as

the boundary condition at the electrode surface instead of the Bulter-Volmer equation,
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and it was observedthat for _ = 10, the current due to diffusion of material into the

pore contributes less than 2% to the peak current if _r > 42/7. This bound of cr is valid

for _ > 10, and results in a percentage error less than two for _ < 10. When the kinetics

were irreversible, it was observed that axial diffusion can be ignored as long as _r > 75/7.

Material diffusing through the pore mouth will contribute a larger fraction of the

current as the potential becomes more non-unlform since the potential driving force at

the pore aperture will need to be increased in order to drive the reaction at the back of

the pore to an appreciable rate. Therefore, a larger value of _r will be required at a given

so that the assumption of negligible axial diffusion is valid. The relationship between

_r and 7 has yet to be determined when solution resistance is appreciable.

4 Summary

Correlations were established for determining kinetic parameters from LSV in a cylin-

drical electrode. Due to the complex dependence of the peak currents and potentials on

the governing parameters, slmplifications were introduced at various parameter limits.

The first simplification was to neglect axial diffusion which allows the diffusion equa-

tion to be analytically solved giving the surface concentration of the redox species in

terms of the reaction current and the solution potential at the electrode surface. Fur-

ther assuming solution resistance is negligible reduces the computation time over three

orders-of-magnitude from the finite-element solution numerical procedure facilitated the
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establishment of the desired correlations. In the limit of reversible (Nernstian) and

irreversible kinetics, corrdations were established which relate the peak currents and

potentials to the sweep rate by making use of the peak expressions on a planar dectrode

and in a thin-layer cell.

The correlations, which are established assuming solution resistance is negligible,

are also useful when solution resistance is appreciable since the currents can be adjusted

to give peak data which would have been obtained in the absence of ohmic effects. The

effect of solution resistance on the peak current was quantified for the irreversible-kinetic

case for _ __ 20 and cr __ 2, but more simulations are needed to quantify the peak currents

for _ falling between these two limits. More calculations also need to be performed in

order to establish correlations when the kinetics are reversible. Correlations have yet to

be established for the peak potential calculations which has been collected thus far.
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Notation

A

Co

2_

E

Eo P

E.q
E °

/
F

h

i
q

i

i,

io

Io

I1

I °

Jo

ko

Tf_

n

R

t

T

V

X

Y

electrode axea, cm 2

coefficient in integral approximation

concentration of oxidized species of redox couple, mol/cm s

concentration of reduced species of redox couple, mol/cm s

initial concentration of oxidized species of redox couple, mol/cm s

initial concentration of reduced species of redox couple, mol/cm s

Co/C 
diffusion coemdent of the redox species, cm2/s

solution potential, V

formal potential of redox couple, V

equilibrium initial potential, V

dimensionless potential, n f(E - E °')

F/RT V/equiv

Faraday's constant, C/equiv

width of interval in integral approximation

total reaction current, A

total reaction current when solution resistance in negligible, A

current density at electrode surface, A/cm 3

current density in solution, A/cm 2

exchange current density, A/cm =

zeroth-order modified Bessel function

first-order modified Bessel function

dimensionless current, i,,/(n.fC_

zeroth-order Bessel function

standard rate constant, cm/s

empirical parameter

number of e- in redox couple

gas constant, 3/(mol.K)

time, s

temperature, K

distance from center of pore, cm

volume of pore, cm s

dimensionless axial coordinate, 2z/d

dimensionless radial coordinate, 2r/d

distance from the pore aperture, cm

t
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(_Feek

v

7"

-
zeros of zeroth-order Bessel function Jo

zeros of first-order Bessel function ,ll

conductivity of the electrolyte, (ohm • cm) -1

sweep rate, -_, V/s

dimensionless time, td/2_D

Subscripts

irrev

P

irreversible kinetics

value at peak of voltammogram

reversible kinetics

value at tube wall
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SECTION 6

ON-GOING WORK

The PhD candidate, Mr. Weidner, is currently performing linear sweep voltammetry

experiments for a number of redox couples in a tubular electrode to confirm the theoretical

calculations presented in Section 5. Upon completion of this work he will then repeat these

same measurements for a nickel electrode and attempt to verify the methodology for this

electrode reaction. We anticipate completion of the dissertation no later than May, 1991

and we shall forward, when available, the dissertation and any additional papers which

result from the project.
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